...
首页> 外文期刊>Applied optics >Ion-photon entanglement and quantum frequency conversion with trapped Ba+ ions
【24h】

Ion-photon entanglement and quantum frequency conversion with trapped Ba+ ions

机译:具有捕获的BA +离子的离子光子纠缠和量子频率转换

获取原文
获取原文并翻译 | 示例
           

摘要

Trapped ions are excellent candidates for quantum nodes, as they possess many desirable features of a network node including long lifetimes, on-site processing capability, and production of photonic flying qubits. However, unlike classical networks in which data may be transmitted in optical fibers and where the range of communication is readily extended with amplifiers, quantum systems often emit photons that have a limited propagation range in optical fibers and, by virtue of the nature of a quantum state, cannot be noiselessly amplified. Here, we first describe a method to extract flying qubits from a Ba+ trapped ion via shelving to a long-lived, low-lying D-state with higher entanglement probabilities compared with current strong and weak excitation methods. We show a projected fidelity of approximate to 89% of the ion-photon entanglement. We compare several methods of ion-photon entanglement generation, and we show how the fidelity and entanglement probability varies as a function of the photon collection optic's numerical aperture. We then outline an approach for quantum frequency conversion of the photons emitted by the Ba+ ion to the telecommunication range for long-distance networking and to 780 nm for potential entanglement with rubidium-based quantum memories. Our approach is significant for extending the range of quantum networks and for the development of hybrid quantum networks compromised of different types of quantum memories. (C) 2017 Optical Society of America
机译:被捕获的离子是量子节点的优异候选者,因为它们具有网络节点的许多所需特征,包括长寿,现场处理能力和光子飞行Qubits的生产。然而,与可以在光纤中传输数据的经典网络不同,并且在易于使用放大器易于扩展的情况下,量子系统通常发出光纤在光纤中具有有限的传播范围的光子,并且借助于量子的性质州,不能无声地放大。在这里,我们首先通过搁架通过搁架从BA +被捕获的离子从BA +被捕获的离子提取飞行Qubits的方法,与电流强和弱的激发方法相比,具有较高的缠结概率。我们展示了近似为89%的离子光子纠缠的预测保真度。我们比较了几种离子光子缠结生成的方法,并且我们展示了如何用光子汇集光学器件的数值孔径的函数变化。然后,我们概述了对长距离网络的电信范围的电信范围和780nm的电信范围的量子频率转换的方法,用于与基于铷的量子存储器的潜在缠结。我们的方法对于扩展量子网络的范围和用于开发不同类型的量子存储器的混合量子网络的发展是很大的。 (c)2017年光学学会

著录项

  • 来源
    《Applied optics》 |2017年第3期|共9页
  • 作者单位

    US Army Res Lab Adelphi MD 20783 USA;

    US Army Res Lab Adelphi MD 20783 USA;

    US Army Res Lab Adelphi MD 20783 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 应用;
  • 关键词

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号