...
首页> 外文期刊>Applied optics >Rapid wide-field imaging through scattering media by digital holographic wavefront correction
【24h】

Rapid wide-field imaging through scattering media by digital holographic wavefront correction

机译:通过数字全息波前校正通过散射介质的快速宽场成像

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Imaging through scattering media has been a long standing challenge in many disciplines. One of the promising solutions to address the challenge is the wavefront shaping technique, in which the phase distortion due to a scattering medium is corrected by a phase modulation device such as a spatial light modulator (SLM). However, the wide-field imaging speed is limited either by the feedback-based optimization to search the correction phase or by the update rate of SLMs. In this report, we introduce a new method called digital holographic wavefront correction, in which the correction phase is determined by a single-shot off-axis holography. The correction phase establishes the so-called "scattering lens", which allows any objects to be imaged through scattering media; in our case, the "scattering lens" is a digital one established through computational methods. As no SLM is involved in the imaging process, the imaging speed is significantly improved. We have demonstrated that moving objects behind scattering media can be recorded at the speed of 2.8 fps with each frame corrected by the updated correction phase while the image contrast is maintained as high as 0.9. The image speed can potentially reach the video rate if the computing power is sufficiently high. We have also demonstrated that the digital wavefront correction method also works when the light intensity is low, which implicates its potential usefulness in imaging dynamic processes in biological tissues. (C) 2019 Optical Society of America
机译:通过散射媒体成像在许多学科中是一个很长的挑战。解决挑战的有希望的解决方案之一是波前塑造技术,其中由散射介质引起的相位失真被诸如空间光调制器(SLM)的相位调制装置校正。然而,宽场成像速度通过基于反馈的优化来限制,以搜索校正阶段或通过SLM的更新速率。在本报告中,我们介绍了一种新的方法,称为数字全息波前校正,其中校正阶段由单次偏离轴全息术确定。校正阶段建立所谓的“散射镜片”,允许通过散射介质成像的任何物体;在我们的情况下,“散射镜头”是通过计算方法建立的数字。由于没有SLM参与成像过程,显着提高了成像速度。我们已经证明,散射介质后面的移动物体可以以2.8 fps的速度记录,每个帧通过更新的校正阶段校正,而图像对比度保持高达0.9。如果计算功率足够高,则图像速度可能会达到视频速率。我们还表明,当光强度低时,数字波前校正方法也有效,这意味着其在生物组织中成像动态过程中的潜在有用性。 (c)2019年光学学会

著录项

  • 来源
    《Applied optics》 |2019年第11期|共9页
  • 作者单位

    Chinese Acad Sci Xian Inst Opt &

    Precis Mech State Key Lab Transient Opt &

    Photon Xian 710119 Shaanxi Peoples R China;

    Chinese Acad Sci Xian Inst Opt &

    Precis Mech State Key Lab Transient Opt &

    Photon Xian 710119 Shaanxi Peoples R China;

    Chinese Acad Sci Xian Inst Opt &

    Precis Mech State Key Lab Transient Opt &

    Photon Xian 710119 Shaanxi Peoples R China;

    Chinese Acad Sci Xian Inst Opt &

    Precis Mech State Key Lab Transient Opt &

    Photon Xian 710119 Shaanxi Peoples R China;

    Chinese Acad Sci Xian Inst Opt &

    Precis Mech State Key Lab Transient Opt &

    Photon Xian 710119 Shaanxi Peoples R China;

    Chinese Acad Sci Xian Inst Opt &

    Precis Mech State Key Lab Transient Opt &

    Photon Xian 710119 Shaanxi Peoples R China;

    Chinese Acad Sci Xian Inst Opt &

    Precis Mech State Key Lab Transient Opt &

    Photon Xian 710119 Shaanxi Peoples R China;

    Chinese Acad Sci Xian Inst Opt &

    Precis Mech State Key Lab Transient Opt &

    Photon Xian 710119 Shaanxi Peoples R China;

    Chinese Acad Sci Xian Inst Opt &

    Precis Mech State Key Lab Transient Opt &

    Photon Xian 710119 Shaanxi Peoples R China;

    Xi An Jiao Tong Univ Sch Sci Xian 710049 Shaanxi Peoples R China;

    Clemson Univ Dept Bioengn Clemson MUSC Bioengn Program Charleston SC 29425 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 应用;
  • 关键词

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号