...
首页> 外文期刊>Applied optics >Joint 3D localization and classification of space debris using a multispectral rotating point spread function
【24h】

Joint 3D localization and classification of space debris using a multispectral rotating point spread function

机译:使用多光谱旋转点传播功能的关节3D定位和空间碎片分类

获取原文
获取原文并翻译 | 示例
           

摘要

We consider the problem of joint three-dimensional (3D) localization and material classification of unresolved space debris using a multispectral rotating point spread function (RPSF). The use of RPSF allows one to estimate the 3D locations of point sources from their rotated images acquired by a single 2D sensor array, since the amount of rotation of each source image about its x, y location depends on its axial distance z. Using multispectral images, with one RPSF per spectral band, we are able not only to localize the 3D positions of the space debris but also classify their material composition. We propose a three-stage method for achieving joint localization and classification. In stage 1, we adopt an optimization scheme for localization in which the spectral signature of each material is assumed to be uniform, which significantly improves efficiency and yields better localization results than possible with a single spectral band. In stage 2, we estimate the spectral signature and refine the localization result via an alternating approach. We process classification in the final stage. Both Poisson noise and Gaussian noise models are considered, and the implementation of each is discussed. Numerical tests using multispectral data from NASA show the efficiency of our three-stage approach and illustrate the improvement of point source localization and spectral classification from using multiple bands over a single band. (C) 2019 Optical Society of America
机译:我们考虑使用多光谱旋转点扩展功能(RPSF)的联合三维(3D)定位和未解决空间碎片的材料分类的问题。使用RPSF允许一个人从由单个2D传感器阵列获取的旋转图像估计点源的3D位置,因为关于其X,Y位置的每个源图像的旋转量取决于其轴向距离z。使用多光谱图像,每个光谱频带的一个RPSF,我们不仅能够本地化空间碎片的3D位置,还可以分类它们的材料组成。我们提出了一种实现联合本地化和分类的三阶段方法。在第1阶段,我们采用优化方案进行定位,其中假设每种材料的光谱特征是均匀的,这显着提高了效率,并利用单个光谱带产生更好的定位结果。在第2阶段,我们通过交替方法估计光谱签名并优化本地化结果。我们在最后阶段处理分类。考虑了泊松噪声和高斯噪声模型,并讨论了每个噪音。来自NASA的使用多光谱数据的数值测试显示了我们的三阶段方法的效率,并说明了在单个频带上使用多个频段的点源定位和光谱分类的提高。 (c)2019年光学学会

著录项

  • 来源
    《Applied optics》 |2019年第31期|共14页
  • 作者单位

    Wake Forest Univ Dept Comp Sci Winston Salem NC 27109 USA;

    Wake Forest Univ Dept Comp Sci Winston Salem NC 27109 USA;

    Wake Forest Univ Dept Comp Sci Winston Salem NC 27109 USA;

    Univ New Mexico Dept Phys &

    Astron Albuquerque NM 87131 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 应用;
  • 关键词

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号