...
首页> 外文期刊>Applied optics >Efficiency enhancement of ultrathin CIGS solar cells by optimal bandgap grading
【24h】

Efficiency enhancement of ultrathin CIGS solar cells by optimal bandgap grading

机译:通过最佳带隙分级的超薄CIGS太阳能电池效率提高

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The power conversion efficiency of an ultrathin CuIn1-xi Ga xi Se2 (CIGS) solar cell was maximized using a coupled optoelectronic model to determine the optimal bandgap grading of the nonhomogeneous CIGS layer in the thickness direction. The bandgap of the CIGS layer was either sinusoidally or linearly graded, and the solar cell was modeled to have a metallic backreflector corrugated periodically along a fixed direction in the plane. The model predicts that specially tailored bandgap grading can significantly improve the efficiency, with much smaller improvements due to the periodic corrugations. An efficiency of 27.7% with the conventional 2200-nm-thick CIGS layer is predicted with sinusoidal bandgap grading, in comparison to 22% efficiency obtained experimentally with homogeneous bandgap. Furthermore, the inclusion of sinusoidal grading increases the predicted efficiency to 22.89% with just a 600-nm-thick CIGS layer. These high efficiencies arise due to a large electron-hole pair generation rate in the narrow-bandgap regions and the elevation of the open-circuit voltage due to a wider bandgap in the region toward the front surface of the CIGS layer. Thus, bandgap nonhomogeneity, in conjunction with periodic corrugation of the backreflector, can be effective in realizing ultrathin CIGS solar cells that can help overcome the scarcity of indium. (C) 2019 Optical Society of America
机译:利用耦合光电模型最大化超薄Cuin1-Xi Ga Xi Se2(CIGS)太阳能电池的功率转换效率,以确定厚度方向上的非均匀CIGS层的最佳带隙分级。 CIGS层的带隙是正弦的或线性分级的,并且模拟太阳能电池以沿着平面中的固定方向周期性地具有金属反向架。该模型预测,特别定制的带隙分级可以显着提高效率,由于周期性波纹导致的更大的改进。常规2200nm厚的CIG层的效率为27.7%,以正弦带隙分级预测,与均匀的带隙通过实验获得的22%效率相比。此外,仅使用600nm厚的CIGS层将预测效率增加到22.89%的预测效率。由于窄带隙区域中的较大的电子 - 空穴对产生速率和由于区域的前表面朝向CIGS层的前表面而导致的窄带隙区域中的较大的电子 - 空穴对产生速率和开路电压的升高而产生的这些高效。因此,结合逆向转换器的周期性波纹的带隙非均匀性可以有效地实现了有助于克服铟的稀缺性的超薄。 (c)2019年光学学会

著录项

  • 来源
    《Applied optics》 |2019年第22期|共12页
  • 作者单位

    Penn State Univ Dept Engn Sci &

    Mech NanoMM Nanoengn Metamat Grp University Pk PA 16802 USA;

    Univ Delaware Dept Math Sci 501 Ewing Hall Newark DE 19716 USA;

    Univ Delaware Dept Math Sci 501 Ewing Hall Newark DE 19716 USA;

    Penn State Univ Dept Engn Sci &

    Mech NanoMM Nanoengn Metamat Grp University Pk PA 16802 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 应用;
  • 关键词

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号