...
首页> 外文期刊>Applied optics >Design considerations for advanced MWIR target acquisition systems
【24h】

Design considerations for advanced MWIR target acquisition systems

机译:高级MWIR目标采集系统的设计考虑因素

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper, mid-wave infrared (MWIR) sensor optimization is provided as a function of the parameter F lambda/d, where F is the f-number, lambda is the effective wavelength, and d is the detector pitch. For diffraction limited systems, acquisition range is related to the instantaneous field of view (detector limited operation) when F lambda/d < 1, and to the optical properties (optics limited operation) when F lambda/d > 2.0. Range performance is a combination of detector and optics resolution limits when F lambda/d is in between. When the system is not strictly diffraction or sampling limited, the optimal F lambda/d depends on other system component characteristics and conditions. Optical system aberrations affect system resolution and decrease range performance. As background shot noise, dark current shot noise, and read noise increase, range decreases. In the infrared spectral region, atmospheric absorption leads to reemission of thermal energy. The detected reemission creates additional shot noise. Atmospheric attenuation greatly affects MWIR sensor range performance. Next-generation MWIR sensors will have smaller detectors, larger arrays, and better sensitivity to enable F lambda/d-based optimization. Previous studies (Delta T= 4 K for tracked vehicles) suggest that an initial design point is F lambda/d approximate to 2.0. When detecting low contrast targets (Delta T similar to 0.1 K), sensor gain is used to increase the signal for a desired displayed contrast. This gain increases displayed noise and reduces acquisition range. This is typically not an issue for long-wave infrared sensors due to the excess number of photons in the 8-12 mu m band but poses a problem for MWIR sensors, which are photon starved. Under such scenarios, the optimum F lambda/d appears to be about 1.5 for MWIR sensors. The results here provide reasonable strategies for MWIR system optimization and a direction associated with future MWIR focal plane development. (C) 2020 Optical Society of America
机译:在本文中,中波红外(MWIR)传感器优化作为参数F Lambda / D的函数提供,其中F是F数,Lambda是有效波长,D是检测器间距。对于衍射限制系统,获取范围与当F Lambda / D <1时的瞬时视野(检测器有限操作)以及当F Lambda / D> 2.0时的光学性质(光学有限的操作)有关。范围性能是当F Lambda / D在介于之间的检测器和光学分辨率限制的组合。当系统不严格衍射或采样限制时,最佳F Lambda / D取决于其他系统组件特性和条件。光学系统像差会影响系统分辨率并降低范围性能。作为背景射击噪声,暗电流射击噪声,以及读取噪声增加,范围减小。在红外光谱区域中,大气吸收导致热能的反应。检测到的remission会产生额外的镜头噪声。大气衰减极大地影响了MWIR传感器范围性能。下一代MWIR传感器将具有较小的探测器,更大的阵列,更好的灵敏度,以实现基于λ/ D基优化。以前的研究(跟踪车辆的Delta T = 4 k)表明初始设计点是F Lambda / D近似为2.0。当检测低对比度目标(类似于0.1k的ΔT)时,使用传感器增益来增加所需显示的对比度的信号。此增益增加显示噪声并减少采集范围。这通常不是长波红外传感器由于8-12μm频带中的多倍数的光子而对长波红外传感器产生的问题,但是对于MWIR传感器构成问题,这是光子饥饿的。在这种情况下,MWIR传感器的最佳F Lambda / D似乎约为1.5。这里的结果为MWIR系统优化和与未来MWIR焦平面开发相关的方向提供了合理的策略。 (c)2020美国光学学会

著录项

  • 来源
    《Applied optics》 |2020年第14期|共10页
  • 作者

  • 作者单位
  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 应用;
  • 关键词

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号