...
首页> 外文期刊>Applied optics >Zernike monomials in wide field of view optical designs
【24h】

Zernike monomials in wide field of view optical designs

机译:Zernike单体在宽视野中的光学设计

获取原文
获取原文并翻译 | 示例
           

摘要

Zernike polynomials are universal in optical modeling and testing of wavefronts; however, their polynomial behavior can cause a misinterpretation of individual aberrations. Wavefront profiles described by Zernike polynomials contain multiple terms with different orders of pupil radius (rho). Zernike polynomials are a sum of high and low orders of rho to minimize the RMS wavefront error and to preserve orthogonality. Since the low-order polynomials are still contained in the net Zernike sum, there is redundancy in individual monomials. Monomial aberrations, also known as Seidel or primary aberrations, are useful in studying an optical design's complexity, alignment, and field behavior. Zernike polynomial aberrations reported by optical design software are not indicative of individual (monomial) aberrations in wide field of view designs since the low-order polynomials are contaminated by higher order terms. An aberration node is the field location where an individual (monomial) aberration is zero. In this paper, a matrix method is shown to calculate the individual monomial aberrations given the set of Zernike polynomials. Monomial aberrations plotted as a function of field angle (H) indicate the field order (H-n) and the location of true aberration nodes. Contrarily, Zernike polynomial versus field (ZvF) plots can indicate false aberration nodes, due to the polynomial mixing of high- and low-order terms. Accurate knowledge of the monomial aberration nodes, converted from Zernike polynomials, provides the link between a ray-trace model or lab wavefront measurement and nodal aberration theory (NAT). This method is applied to two different optical designs: (1) 120 degrees circular FOV fish-eye lens and (2) 120 degrees x 4 degrees rectangular FOV, off-axis, free form four-mirror design. (C) 2020 Optical Society of America
机译:Zernike多项式在光上的光学建模和测试中是普遍的;然而,它们的多项式行为可能导致对个体像差的误解。由Zernike多项式描述的波前概况包含具有不同瞳孔半径(RHO)的多个术语。 Zernike多项式是rho的高低秩序之和,以最小化RMS波前误差并保持正交性。由于低阶多项式仍包含在网络Zernike Sum中,因此个人单体中存在冗余。单体像差,也称为Seidel或初级像差,可用于研究光学设计的复杂性,对准和现场行为。通过光学设计软件报告的Zernike多项式像差不是指示在宽视野设计中的个体(单体)像差,因为低阶多项式被更高阶项污染。像差节点是字段位置,其中单个(单体)像差为零。在本文中,示出了矩阵方法来计算给定该组Zernike多项式的单个单体像差。作为场角(h)的函数绘制的单体像差指示现场顺序(H-N)和真正像差节点的位置。相反,由于高阶和低阶项的多项式混合,Zernike多项式与场(ZVF)图表示错误的像差节点。精确了解从Zernike多项式转换的单体像差节点,提供了光线跟踪模型或实验室波前测量和节点像差理论(NAT)之间的链接。该方法应用于两种不同的光学设计:(1)120度圆形FOV鱼眼透镜和(2)120度x 4度矩形FOV,轴外,自由形式的四镜设计。 (c)2020美国光学学会

著录项

  • 来源
    《Applied optics》 |2020年第22期|共8页
  • 作者

    Johnson Tim P.; Sasian Jose;

  • 作者单位

    Raytheon Co Space &

    Airborne Syst 2000 E El Segundo Blvd El Segundo CA 90245 USA;

    Univ Arizona Coll Opt Sci 1630 E Univ Blvd Tucson AZ 85721 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 应用;
  • 关键词

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号