...
首页> 外文期刊>Angewandte Chemie >NMR Study of Water Molecules Confined in Extended Nanospaces
【24h】

NMR Study of Water Molecules Confined in Extended Nanospaces

机译:限制在扩展纳米空间中的水分子的NMR研究

获取原文
获取原文并翻译 | 示例
           

摘要

The study of water in confined geometries has been receiving much attention in chemistry, biology, and geology.[1] A variety of spectroscopic and theoretical investigations have demonstrated that water molecules confined in 1-nm-scale materials such as porous silica show unique properties not seen on the bulk scale.[2]-[7] A 1-nm-scale space is available as an experimental space for characterizing the behavior of an individual single molecule, while this scale is too small to illuminate the collective behaviors of liquid-phase molecules as condensed-phase matter. To elucidate the complicated properties of liquid-phase water molecules, a 10-100-nm-scale space is appropriate but has been almost unavailable. The technologies involved in micro- and nanochemistry on a chip are expected to allow the production of a physicochemically well-defined 10-10-nm-scale space on glass substrates (called an extended nanospace). Previously, we developed extended nanospaces by means of well-controlled micro-anofabrication techniques and made capillary and time-resolved fluorescence measurements of water confined in the spaces.[8] The results showed that, compared with bulk water, the water confined in the extended nanospaces had a higher viscosity and a lower dielectric constant. Similar size-confinement phenomena have been shown in hydrodynamic flow, conductivity, and ionic transport results in extended nanospaces.[9]-[12] However, little molecular-level information is available concerning the mechanisms for the novel confinement-induced nanospatial properties of water molecules in extended nanospaces. Here we present size-confinement effects of the molecular structure, motions, protonic mobility, and localization of proton-charge distribution of water and water-surface proton exchange in 295-5000-nm extended nanospaces by NMR spectroscopy measurements.
机译:在有限的几何形状中对水的研究在化学,生物学和地质学中受到了广泛的关注。[1]各种光谱学和理论研究表明,局限在1纳米级材料(例如多孔二氧化硅)中的水分子显示出在批量规模上不可见的独特特性。[2]-[7] 1纳米级空间可用作为表征单个单个分子行为的实验空间,该比例尺太小,无法说明液相分子作为凝聚相物质的集体行为。为了阐明液相水分子的复杂特性,10-100 nm尺度的空间是合适的,但几乎不可用。芯片上的微米和纳米化学涉及的技术有望在玻璃基板上产生物理化学上明确定义的10-10-nm尺度的空间(称为扩展纳米空间)。以前,我们通过控制良好的微/纳米加工技术开发了扩展的纳米空间,并对封闭空间中的水进行了毛细管和时间分辨荧光测量。[8]结果表明,与散装水相比,封闭在扩展纳米空间中的水具有较高的粘度和较低的介电常数。在扩展的纳米空间中的流体动力流动,电导率和离子迁移结果中也显示出类似的尺寸限制现象。[9]-[12]但是,关于这种新型的限制诱发的纳米空间特性机理的分子水平信息很少。扩展的纳米空间中的水分子。在这里,我们通过NMR光谱测量方法,对295-5000 nm扩展纳米空间中水的分子结构,运动,质子迁移率和水的质子电荷分布以及水表面质子交换的局限性进行了大小限制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号