...
首页> 外文期刊>Nanotechnology >Oxygen plasma-fragmented KMnF3 nanoparticle benefits contrast enhancement for MRI of a patient-derived tumor xenograft model
【24h】

Oxygen plasma-fragmented KMnF3 nanoparticle benefits contrast enhancement for MRI of a patient-derived tumor xenograft model

机译:氧等离子体碎裂的KMNF3纳米粒子有利于患者衍生的肿瘤异种移植模型的MRI对比增强

获取原文
获取原文并翻译 | 示例
           

摘要

Magnetic nanoparticles (NPs) are emerging as promising candidates for the next generation of image contrast agents and their performance is largely dependent on physicochemical properties. In this paper, a new type of 'top-down' fabrication technique was developed to synthesize ultrasmall magnetic NPs as a contrast enhancer. In a detailed, home-made oxygen plasma generator, fragments of larger KMnF3 NPs (22 nm) were broken down into smaller (5 nm) particles with enhanced hydrophilicity. As massive activated oxygen species were produced during the process, the plasma was able to severely etch the NPs, and vacuum UV light irradiated them heavily as well, leaving them with weak crystallinity, splitting them into ultrafine particles. Also their surface transformed from hydrophobic to hydrophilic by oxidizing the passivated ligand, evidenced by the spectroscopy and microscopy results. The fragmented NPs are characteristic of unprecedented high longitudinal relaxivity (r(1) = 35.52 mM(-1).s(-1)) and appropriate biocompatibility. In a healthy mouse, the ultrafine NPs did not exert observable toxicity, this was evaluated by histology of the main organs and hemogram analysis, including kidney and liver function analysis. More interestingly, the ultrasmall NPs had a very long circulation time, as its blood half-life was around 20 h. When applied as a contrast enhancer for MRI of the patient-derived tumor xenograft model, the accumulation of KMnF3 NPs within the tumor had an average of 12.13% ID per gram, which greatly shortened the relaxation time of the tumor. Therefore the control-to-noise ratio was significantly enhanced, relative to the same dosage of Gadopentetetic acid (Magvenist) (P 0.001). Our primary results demonstrate that fragmentation of the NPs via our home-made oxygen plasma technique might be an effective route for fabricating ultrasmall NPs, and benefit their contrast effect when applied as MRI enhancers for clinical diagnosis of tumors.
机译:磁性纳米颗粒(NPS)作为下一代图像造影剂的承诺候选者,它们的性能主要取决于物理化学性质。在本文中,开发了一种新型的“自上而下”制造技术,以将超低磁体NP合成为对比度增强剂。在详细的自制氧等离子体发生器中,较大KMNF3 NPS(22nm)的片段分解成具有增强的亲水性的较小(& 5nm)颗粒。由于在该过程中产生大量活性氧物质,等离子体能够严重蚀刻NPS,并且真空UV光也沉重地照射,使它们具有弱结晶度,将它们分成超细颗粒。其表面通过氧化钝化配体从疏水性转化为亲水性,通过光谱学和显微镜观察结果证明。碎片的NPS是前所未有的高纵向松弛率的特征(R(1)= 35.52mm(-1)。(-1))和适当的生物相容性。在一个健康的小鼠中,超细NPS没有发挥可观察的毒性,这是通过主器官和血液视谱分析的组织学评估的,包括肾脏和肝功能分析。更有趣的是,超小的NP有一个非常长的循环时间,其血液中的半衰期约为20小时。当患者衍生的肿瘤异种移植模型MRI的造影增强剂施用时,KMNF3 NP的积累平均每克12.13%ID,这大大缩短了肿瘤的松弛时间。因此,相对于钆甲酸(Magvient)(P <0.001)的相同剂量,对照噪声比显着增强。我们的主要结果表明,通过我们自制的氧等离子体技术的NPS破碎途径可能是制造超超级NPS的有效途径,并在施用作为MRI增强剂以进行临床诊断时的临床诊断,有利于其对比效果。

著录项

  • 来源
    《Nanotechnology》 |2018年第36期|共9页
  • 作者单位

    Nanchang Univ Sch Publ Hlth Jiangxi Prov Key Lab Prevent Med Nanchang 330006 Jiangxi Peoples R China;

    Nanchang Univ Inst Adv Study Nanchang 330031 Jiangxi Peoples R China;

    Jiangxi Supervis &

    Inspect Ctr Med Devices Nanchang 330029 Jiangxi Peoples R China;

    Nanchang Univ Coll Chem Nanchang 330031 Jiangxi Peoples R China;

    Nanchang Univ Inst Adv Study Nanchang 330031 Jiangxi Peoples R China;

    Nanchang Univ Food Engn Ctr Nanchang 330029 Jiangxi Peoples R China;

    Nanchang Univ Affiliated Hosp 2 Dept Radiol Nanchang 330006 Jiangxi Peoples R China;

    Nanchang Univ Affiliated Hosp 2 Dept Radiol Nanchang 330006 Jiangxi Peoples R China;

    Nanchang Univ Sch Publ Hlth Jiangxi Prov Key Lab Prevent Med Nanchang 330006 Jiangxi Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 特种结构材料;
  • 关键词

    O-2 plasma; top-down; MRI; patient-derived tumor xenograft;

    机译:O-2等离子体;自上而下;MRI;患者衍生的肿瘤异种移植物;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号