首页> 外文期刊>Earth and Planetary Science Letters: A Letter Journal Devoted to the Development in Time of the Earth and Planetary System >Phase stability and thermal equation of state of delta-AlOOH: Implication for water transportation to the Deep Lower Mantle
【24h】

Phase stability and thermal equation of state of delta-AlOOH: Implication for water transportation to the Deep Lower Mantle

机译:三角洲稳定性和热方程:水运对深层地幔的影响

获取原文
获取原文并翻译 | 示例
           

摘要

In this study, we present new experimental constraints on the phase stability and thermal equation of state of an important hydrous phase, delta-AlOOH, using synchrotron X-ray diffraction up to 142 GPa and 2500 K. Our experimental results have shown that delta-AlOOH remains stable at the whole mantle pressure-temperature conditions above the D '' layer yet will decompose at the core-mantle boundary because of a dramatic increase in temperature from the silicate mantle to the metallic outer core. At the bottom transition zone and top lower mantle, the formation of delta-AlOOH by the decomposition of phase Egg is associated with a similar to 2.1-2.5% increase in density (rho) and a similar to 19.7-20.4% increase in bulk sound velocity (V-Phi). The increase in rho across the phase Egg to delta-AlOOH phase transition can facilitate the subduction of delta-AlOOH to the lower mantle. Compared to major lower-mantle phases, delta-AlOOH has the lowest rho but greatest V-Phi, leading to an anomalous low rho/V-Phi ratio which can help to identify the potential presence of delta-AlOOH in the region. More importantly, water released from the breakdown of delta-AlOOH at the core-mantle boundary could lower the solidus of the pyrolitic mantle to cause partial melting and/or react with Fe in the region to form the low-velocity FeO2Hx phase. The presence of partial melting and/or the accumulation of FeO2Hx phase at the CMB could be the cause for the ultra-low velocity zone. delta-AlOOH is thus an important phase to transport water to the lowermost mantle and helps to understand the origin of the ultra-low velocity zone. (C) 2018 Elsevier B.V. All rights reserved.
机译:在这项研究中,我们使用高达142GPa和2500k的同步X射线衍射来呈现重要的含水相的相位稳定性和热方程的新的实验约束。我们的实验结果表明Delta- ALOOH在D'层上方的整个地幔压力温度条件下保持稳定,但是由于从硅酸盐壳体到金属外芯的温度急剧增加,将在芯板边界处分解。在底部过渡区和顶部下层露地上,通过分解相蛋的形成与相似的密度(rhO)增加2.1-2.5%,其散装声音增加2.7-20.4%速度(V-PHI)。将卵卵越桔增加到三角形 - AlOOH相转变可以促进Delta-AlOOH的俯冲到下部地幔。与主要的下幔阶段相比,Delta-Alooh具有最低的rho但最大的V-Phi,导致异常的低rho / V-phi比,这有助于识别该区域中Delta-Alooh的潜在存在。更重要的是,从芯 - 地幔边界处的Δ-alooh击穿释放的水可以降低吡咯性裂缝的固体,以引起部分熔化和/或与区域中的Fe反应以形成低速FeO2HX相。在CMB处存在部分熔融和/或FeO2HX相的积累可以是超低速度区的原因。因此,Delta-Alooh是将水运输到最下面地幔的重要阶段,并有助于理解超低速度区的起源。 (c)2018年elestvier b.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号