...
首页> 外文期刊>Angewandte Chemie >Elimination Reactions of Esters in the Biosynthesis of Polyketides and Ribosomal Peptides
【24h】

Elimination Reactions of Esters in the Biosynthesis of Polyketides and Ribosomal Peptides

机译:聚酮和核糖体肽生物合成中酯的消除反应

获取原文
获取原文并翻译 | 示例
           

摘要

Carbon-carbon double bonds feature as characteristic structural motifs in many natural products. Nature has evolved several chemical transformations that together give rise to a wealth of functionally distinct alkenes and alkene-derived functional groups. Oxidative decarboxylation of a C-terminal cysteine residue, for example, forms the rare amino-vinylcysteine (AviCys) moiety found in several lantipepti-des. The abstraction of dihydrogen from a saturated carbon-carbon bond, which is carried out by a number of dehydrogenases, is one of the key pathways for introducing the double bonds in unsaturated fatty acids. Arguably the most widespread chemical transformation leading to the generation of a carbon-carbon double bond and the subject of this Highlight, however, is the formal elimination of water from a β-hydroxycarbonyl compound to produce an enoyl moiety. β-Elimination of water is the driving force in each of the consecutive C2 elongation cycles that characterizes fatty acid biosynthesis. In this process, malonate as its monothioester is condensed with another thioester to give a ketone, which further undergoes reduction to the corresponding β-hydroxy thioester. Deprotonation at the α-carbon atom followed by elimination of a hydroxy group then produces the carbon-carbon double bond. This is normally reduced to the single bond, thereby setting up the system for another chain elongation event. Essentially the same process is also found in polyketide biosynthesis, a pathway present in many microorganisms for the synthesis of secondary metabolites. The structural diversity of the polyketides results not only from the utilization of α-mono-substituted malonates as well as malonate, but also from the partial or complete execution of the cycle through ketoreduction of the β-carbonyl group by a ketoreductase (KR), a dehydratase (DH) mediated β-elimination, and an endoreductase (ER)-mediated hydro-genation.
机译:碳-碳双键是许多天然产物中的特征结构基序。大自然已经进化出了几种化学转化,这些化学转化共同产生了许多功能上不同的烯烃和烯烃衍生的官能团。 C端半胱氨酸残基的氧化脱羧作用,例如,形成了在几个Lantipepti-des中发现的稀有氨基-乙烯基半胱氨酸(AviCys)部分。由许多脱氢酶进行的从饱和碳-碳键中提取二氢是在不饱和脂肪酸中引入双键的关键途径之一。可以说,导致产生碳-碳双键的最广泛的化学转化是该亮点的主题,然而,该转化的主题是从β-羟基羰基化合物中正式消除水以生成烯酰基部分。 β-消除水是表征脂肪酸生物合成的每个连续C2延伸循环的驱动力。在该方法中,将丙二酸酯作为其单硫酯与另一种硫酯缩合,得到酮,将其进一步还原为相应的β-羟基硫酯。在α-碳原子上进行去质子化,然后消除羟基,然后产生碳-碳双键。通常将其还原为单键,从而为另一个链延伸事件设置系统。在聚酮化合物的生物合成中也发现了基本上相同的过程,这是许多微生物中存在的用于合成次级代谢产物的途径。聚酮化合物的结构多样性不仅是由于利用了α-单取代的丙二酸酯以及丙二酸酯,而且还因为通过酮还原酶(KR)对β-羰基进行酮还原而部分或完全执行了循环,脱水酶(DH)介导的β-消除和内还原酶(ER)介导的氢化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号