...
首页> 外文期刊>Angewandte Chemie >The S2 State of the Oxygen-Evolving Complex of Photosystem II Explored by QM/MM Dynamics: Spin Surfaces and Metastable States Suggest a Reaction Path Towards the S3 State
【24h】

The S2 State of the Oxygen-Evolving Complex of Photosystem II Explored by QM/MM Dynamics: Spin Surfaces and Metastable States Suggest a Reaction Path Towards the S3 State

机译:QM / MM动力学探索的光系统II析氧复合物的S2状态:自旋表面和亚稳态表明向S3状态的反应路径

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

One of the key steps in photosynthetic solar-energy conversion performed by plants, algae, and cyanobacteria is the splitting of water into molecular oxygen and hydrogen equivalents. To achieve this challenging task photosynthetic organisms use a protein complex that remained almost unchanged during the evolution in the last two and a half billion years: the photosystem II (PSII). The reaction proceeds by the accumulation of four oxidizing equivalents on the {Mn4CaO5} cluster through five (S0-S4) oxidation states that are sequentially attained during water splitting (Kok cycle). The deep understanding of the way nature has found to perform this difficult task efficiently has a great relevance not only for biology but also for inspiring the development of biomimetic artificial systems that can be used to store solar energy in an environmentally friendly way. Atomic details of the structure of the oxygen-evolving complex (OEC) of PSII have been revealed by extended X-ray absorption fine structure (EXAFS) experiments and by X-ray crystallography at increasing resolution levels.However, the accurate position of the {Mn4CaO5} cluster atoms and its ligands emerged only when a X-ray structure at 1.9 A resolution became accessible. However, the effect of a possible X-ray photo-reduction, in particular on the characterization of the Kok's state described by this structure and on the unrealistic bond lengths between the oxygen atom O5 and the two manganese ions Mnl and Mn4, is matter of debate. Additionally, important contributions to the structure refinement came from theoretical studies.
机译:植物,藻类和蓝细菌执行的光合作用太阳能转换的关键步骤之一是将水分解为分子氧和氢当量。为了完成这一具有挑战性的任务,光合生物使用了蛋白质复合物,该复合物在过去的两年半的十年中一直保持不变:光系统II(PSII)。反应通过在水分解(Kok循环)过程中依次达到的五个(S0-S4)氧化态而在{Mn4CaO5}簇上累积四个氧化当量而进行。对自然界发现的有效执行这项艰巨任务的方式的深刻理解,不仅与生物学息息相关,而且与启发仿生人工系统的发展也有着极大的关联,该系统可以以环境友好的方式用于储存太阳能。通过扩展的X射线吸收精细结构(EXAFS)实验和X射线晶体学以提高的分辨度水平揭示了PSII的析氧复合物(OEC)结构的原子细节。 Mn4CaO5}团簇原子及其配体仅在1.9 A分辨率的X射线结构可用时出现。但是,可能的X射线光还原的影响,特别是对这种结构所描述的Kok态的表征,以及对氧原子O5与两个锰离子Mn1和Mn4之间不切实际的键长的影响,都是辩论。此外,理论研究对结构改进也做出了重要贡献。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号