...
首页> 外文期刊>Angewandte Chemie >Adsorbate-Induced Surface Segregation for Core-Shell Nanocatalysts
【24h】

Adsorbate-Induced Surface Segregation for Core-Shell Nanocatalysts

机译:吸附剂诱导的核壳纳米催化剂的表面偏析

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Considering the continuously rising price of precious metals, a reduction in the amount of noble metal in catalysts is of great importance for many industrial applications. One approach is to decrease the size of catalyst particles down to the nanometer range to increase the specific surface area per mass, but also to benefit from a change in the electronic structure. Core-shell catalyst structures containing an inexpensive, non-noble core surrounded by a noble-metal shell can bring about further improvements in this respect. Ideally only the catalyti-cally active metal is located at the surface, where the reactions take place; the reaction rate should not suffer as a result of the inactive core material. A promising class of fuel-cell-cathode catalysts are alloys of platinum with other transition metals. For these materials core-shell structures can be achieved by high-temperature annealing chemical leaching of the non-noble material, or electrochemical deposition techniques. All of these methods, however, exhibit significant disadvantages including the loss in active surface area and material, the formation of an incomplete noble-metal shell, and the necessity for potential control during preparation. Herein we present a novel preparation procedure of such core-shell nanoparticles with a platinum shell that overcomes these issues by using an adsorbate-induced surface segregation effect.
机译:考虑到贵金属价格的不断上涨,减少催化剂中贵金属的量对于许多工业应用而言至关重要。一种方法是将催化剂颗粒的尺寸减小至纳米范围,以增加单位质量的比表面积,而且还受益于电子结构的变化。包含由贵金属壳包围的廉价的非贵族核的核-壳催化剂结构可以在这方面带来进一步的改进。理想情况下,只有催化活性金属位于反应发生的表面。反应速率不应因无活性芯材而受到影响。一类有前途的燃料电池阴极催化剂是铂与其他过渡金属的合金。对于这些材料,可以通过对非贵金属材料进行高温退火化学浸出或电化学沉积技术来实现核-壳结构。然而,所有这些方法都表现出明显的缺点,包括活性表面积和材料的损失,不完整的贵金属壳的形成以及在制备过程中进行电势控制的必要性。本文中,我们提出了一种具有铂壳的核壳纳米颗粒的新颖制备方法,该方法通过利用吸附剂诱导的表面偏析效应克服了这些问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号