...
首页> 外文期刊>Journal of epidemiology and global health. >Corrigendum to 'Correlates of health attitudes among homosexual and bisexual men' [J. Epidemol. Global Health, 3, 1, (2013) 31-39]
【24h】

Corrigendum to 'Correlates of health attitudes among homosexual and bisexual men' [J. Epidemol. Global Health, 3, 1, (2013) 31-39]

机译:“同性恋和双性恋男性健康态度的相关性”勘误[J.淫羊mol全球卫生,3,1,(2013)31-39]

获取原文
获取原文并翻译 | 示例
           

摘要

We reported that 3′-azido-2′,3′-dideoxyguanosine (3′-azido-ddG) selected for the L74V, F77L, and L214F mutations in the polymerase domain and K476N and V518I mutations in the RNase H domain of HIV-1 reverse transcriptase (RT). In this study, we have defined the molecular mechanisms of 3′-azido-ddG resistance by performing in-depth biochemical analyses of HIV-1 RT containing mutations L74V, F77L, V106I, L214F, R277K, and K476N (SGS3). The SGS3 HIV-1 RT was from a single-genome-derived full-length RT sequence obtained from 3′-azido-ddG resistant HIV-1 selected in vitro. We also analyzed two additional constructs that either lacked the L74V mutation (SGS3-L74V) or the K476N mutation (SGS3-K476N). Pre-steady-state kinetic experiments revealed that the L74V mutation allows RT to effectively discriminate between the natural nucleotide (dGTP) and 3′-azido-ddG- triphosphate (3′-azido-ddGTP). 3′-azido-ddGTP discrimination was primarily driven by a decrease in 3′-azido-ddGTP binding affinity (K d) and not by a decreased rate of incorporation (kpol). The L74V mutation was found to severely impair RT's ability to excise the chain-terminating 3′-azido-ddG-monophosphate (3′-azido-ddGMP) moiety. However, the K476N mutation partially restored the enzyme's ability to excise 3′-azido-ddGMP on an RNA/DNA, but not on a DNA/DNA, template/primer by selectively decreasing the frequency of secondary RNase H cleavage events. Collectively, these data provide strong additional evidence that the nucleoside base structure is major determinant of HIV-1 resistance to the 3′-azido-2′,3′-dideoxynucleosides.
机译:我们报道了为HIV-- 1个逆转录酶(RT)。在这项研究中,我们通过对包含突变L74V,F77L,V106I,L214F,R277K和K476N(SGS3)的HIV-1 RT进行深入的生化分析,确定了3'-叠氮基-ddG耐药的分子机制。 SGS3 HIV-1 RT来自单基因组全长RT序列,该序列是从体外选择的3'-叠氮基-ddG耐药HIV-1获得的。我们还分析了另外两个缺少L74V突变(SGS3-L74V)或K476N突变(SGS3-K476N)的构建体。稳态前的动力学实验表明,L74V突变使RT能够有效地区分天然核苷酸(dGTP)和3'-叠氮基-ddG-三磷酸酯(3'-叠氮基-ddGTP)。 3'-叠氮基-ddGTP区分主要是由3'-叠氮基-ddGTP结合亲和力(K d)降低引起的,而不是由掺入率的降低(kpol)驱动。发现L74V突变严重损害RT切除链终止3'-叠氮基-ddG-单磷酸(3'-叠氮基-ddGMP)部分的能力。但是,K476N突变通过选择性降低次生RNase H裂解事件的频率,部分恢复了酶在RNA / DNA上而不是在DNA / DNA模板/引物上切除3'-azido-ddGMP的能力。总体而言,这些数据提供了强有力的附加证据,表明核苷碱基结构是HIV-1对3'-叠氮基2',3'-双脱氧核苷的抗性的主要决定因素。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号