...
首页> 外文期刊>The European physical journal: Special topics >Glass transition under confinement-what can be learned from calorimetry
【24h】

Glass transition under confinement-what can be learned from calorimetry

机译:限制条件下的玻璃化转变-可以从量热法中学到什么

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Calorimetry is an effective analytical tool to characterize the glass transition and phase transitions under confinement. Calorimetry offers a broad dynamic range regarding heating and cooling rates, in-cluding isothermal and temperature modulated operation. Today 12 orders of magnitude in scanning rate can be covered by combining dif-ferent types of calorimeters. The broad dynamic range, comparable to dielectric spectroscopy, is especially of interest for the study of kineti-cally controlled processes like crystallization or glass transition. Accuracy of calorimetric measurements is not very high. Com-monly it does not reach 0.1% and often accuracy is only a few percent. Nevertheless, calorimetry can reach high sensitivity and reproducibil-ity. Both are of particular interest for the study of confined systems. Low addenda heat capacity chip calorimeters are capable to measure the step in heat capacity at the glass transition in nanometer thin films. The good reproducibility is used for the study of glass forming materials confined by nanometer sized structures, like porous glasses, semicrys-talline structures, nanocomposites, phase separated block copolymers, etc. Calorimetry allows also for the frequency dependent measurement of complex heat capacity in a frequency range covering several orders of magnitude. Here I exclusively consider calorimetry and its application to glass transition in confined materials. In most cases calorimetry reveals only a weak dependence of the glass transition temperature on confinement as long as the confining dimensions are above 10 nm. Why these findings contradict many other studies applying other techniques to similar systems is still an unsolved problem of glass transition in confinement.
机译:量热法是表征受限条件下玻璃化转变和相变的有效分析工具。量热法提供了关于加热和冷却速率的广泛动态范围,包括等温和温度调节操作。如今,通过组合不同类型的量热仪,可以覆盖12个数量级的扫描速率。与介电光谱学相比,宽广的动态范围特别适合研究运动控制的过程,例如结晶或玻璃化转变。量热测量的精度不是很高。通常,它没有达到0.1%,通常精度仅为几个百分点。尽管如此,量热法仍可以达到很高的灵敏度和重现性。两者都对密闭系统的研究特别感兴趣。低附加热容量芯片量热仪能够测量纳米薄膜在玻璃化转变时的热容量阶跃。良好的重现性可用于研究由纳米结构限制的玻璃成型材料,例如多孔玻璃,半结晶滑石结构,纳米复合材料,相分离的嵌段共聚物等。频率范围涵盖几个数量级。在这里,我只考虑量热法及其在密闭材料中玻璃化转变中的应用。在大多数情况下,只要限制尺寸在10 nm以上,量热法就只能显示出玻璃化转变温度对限制的微弱依赖性。为什么这些发现与将其他技术应用到类似系统的许多其他研究相矛盾,但仍然无法解决玻璃转化受限的问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号