首页> 外文期刊>Pure and Applied Geophysics >Granular Controls on Periodicity of Stick-Slip Events: Kinematics and Force-Chains in an Experimental Fault
【24h】

Granular Controls on Periodicity of Stick-Slip Events: Kinematics and Force-Chains in an Experimental Fault

机译:粘滑事件周期性的粒度控制:实验故障中的运动学和力链

获取原文
获取原文并翻译 | 示例
           

摘要

It is a long-standing question whether granular fault material such as gouge plays a major role in controlling fault dynamics such as seismicity and slip-periodicity. In both natural and experimental faults, granular materials resist shear and accommodate strain via interparticle friction, fracture toughness, fluid pressure, dilation, and interparticle rearrangements. Here, we isolate the effects of particle rearrangements on granular deformation through laboratory experiments. Within a sheared photoelastic granular aggregate at constant volume, we simultaneously visualize both particle-scale kinematics and interparticle forces, the latter taking the form of force-chains. We observe stick-slip deformation and associated force drops during an overall strengthening of the shear zone. This strengthening regime provides insight into granular rheology and conditions of stick-slip periodicity, and may be qualitatively analogous to slip that accompanies longer term interseismic strengthening of natural faults. Of particular note is the observation that increasing the packing density increases the stiffness of the granular aggregate and decreases the damping (increases time-scales) during slip events. At relatively loose packing density, the slip displacements during the events follow an approximately power-law distribution, as opposed to an exponential distribution at higher packing density. The system exhibits switching between quasi-periodic and aperiodic slip behavior at all packing densities. Higher packing densities favor quasi-periodic behavior, with a longer time interval between aperiodic events than between quasi-periodic events. This difference in the time-scale of aperiodic stick-slip deformation is reflected in both the kinematics of interparticle slip and the force-chain dynamics: all major force-chain reorganizations are associated with aperiodic events. Our experiments conceptually link observations of natural fault dynamics with current models for granular stick-slip dynamics. We find that the stick-slip dynamics are consistent with a driven harmonic oscillator model with damping provided by an effective viscosity, and that shear-transformation-zone, jamming, and crackling noise theories provide insight into the effective stiffness and patterns of shear localization during deformation.
机译:一个长期的问题是诸如断层泥之类的颗粒状断层材料是否在控制断层动力学(如地震活动性和滑动周期)中起主要作用。在自然和实验断层中,粒状材料均能抵抗剪切并通过颗粒间摩擦,断裂韧性,流体压力,膨胀和颗粒间重排来适应应变。在这里,我们通过实验室实验隔离了颗粒重排对颗粒变形的影响。在恒定体积的剪切光弹性颗粒聚集体中,我们同时可视化了粒子尺度的运动学和粒子间的力,后者采用力链的形式。我们在剪切区域的整体强化过程中​​观察到粘滑变形和相关的力下降。这种强化机制提供了对颗粒流变学和粘滑周期性条件的洞察力,并且可能在质量上类似于与长期断层间自然断裂加筋的滑移。特别要注意的是,增加堆积密度会增加粒状骨料的刚度,并会减少滑移事件期间的阻尼(增加时标)。在相对松散的堆积密度下,与在较高堆积密度下的指数分布相反,事件期间的滑移位移遵循近似幂律分布。该系统在所有填充密度下均表现出准周期性和非周期性滑移行为之间的切换。更高的堆积密度有利于准周期性行为,非周期性事件之间的时间间隔比准周期性事件之间的时间间隔长。非周期性粘滑变形时间尺度上的这种差异反映在粒子间滑动的运动学和力链动力学中:所有主要的力链重组都与非周期性事件有关。我们的实验从概念上将自然断层动力学的观测结果与当前的颗粒粘滑动力学模型相联系。我们发现,粘滑动力学与有效谐波提供阻尼的驱动谐波振荡器模型是一致的,并且剪切变形区,干扰和裂纹噪声理论为有效的刚度和剪切局部化模式提供了见识。形变。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号