...
首页> 外文期刊>Water SA >Biological sulphate reduction with primary sewage sludge in an upflow anaerobic sludge bed reactor- Part 6: Development of a kinetic model for BSR
【24h】

Biological sulphate reduction with primary sewage sludge in an upflow anaerobic sludge bed reactor- Part 6: Development of a kinetic model for BSR

机译:上流厌氧污泥床反应器中初级污水污泥的生物硫酸盐还原-第6部分:BSR动力学模型的开发

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

A 2-phase (aqueous-gas) kinetic model for biological sulphate reduction (BSR) using primary sewage sludge (PSS) as carbon source is presented. The methanogenic anaerobic digestion (AD) model of S6temann et al. (2005) is extended by adding the biological, chemical and physical processes associated with BSR, i.e. propionic acid degrading sulphate-reducing bacteria (SRB), acetoclastic SRB and hydrogenotrophic SRB, the aqueous weak acid/base chemistry processes of the sulphate and sulphide systems and an aqueous-gas sulphide exchange process. The model is validated with experimental data from 2 upflow anaerobic sludge bed (UASB) reactors fed various PSS COD/SO_4~2 ratios under constant flow and load conditions at 35℃ and 20℃. The kinetic model results, including the reactor pH (within 0.1 pH unit) compare well with the experimental results and with those calculated from a steady-state BSR model. The kinetic model confirms that: (1) at ambient temperature (20℃), the hydrolysis rate is significantly reduced compared with that at 35°C, which requires a longer sludge age (larger bed volume) in the UASB reactor; (2) the hydrolysis rate of the PSS biodegradable paniculate organics (BPO) is the same under methanogenic and sulphidogenic conditions; (3) the PSS BPO are carbon deficient for BSR in that more electrons are donated than carbon supplied for the required alkalinity increase, with the result that the sulphide system supplies the alkalinity deficit; and (4) due to (3) there is zero CO_2 gas generation and in effect the sulphide system establishes the reactor pH. This observation allows the carbon content of the utilised organics to be determined from the H_2CO_3* alkalinity increase in the reactor, which can be simply measured by titration methods.%Water Research Group, Department of Civil Engineering, University of Cape Town, Rondebosch 7701, South Africa;Water Research Group, Department of Civil Engineering, University of Cape Town, Rondebosch 7701, South Africa;
机译:提出了使用初级污水污泥(PSS)作为碳源的生物硫酸盐还原(BSR)的两相(水-气)动力学模型。 S6temann等人的产甲烷厌氧消化(AD)模型。 (2005)通过添加与BSR相关的生物,化学和物理过程进行了扩展,即丙酸降解硫酸盐还原细菌(SRB),碎裂性SRB和氢营养性SRB,硫酸盐和硫化物系统的弱酸/碱水化学过程以及水煤气硫化物交换过程。在35℃和20℃的恒定流量和负荷条件下,以两个以不同PSS COD / SO_4〜2比率进料的上流厌氧污泥床(UASB)反应器的实验数据验证了该模型。动力学模型的结果,包括反应器的pH值(在0.1 pH单位以内),与实验结果以及从稳态BSR模型计算得出的结果都具有很好的对比性。动力学模型证实:(1)在环境温度(20℃)下,水解速率与35°C相比显着降低,这需要UASB反应器中更长的污泥龄(更大的床体积); (2)在产甲烷和产硫化条件下,PSS可生物降解的颗粒状有机物(BPO)的水解速率相同; (3)PSS BPO的BSR碳缺乏,因为提供的电子数量多于为增加碱度而供应的碳,结果是硫化物系统提供了碱度不足; (4)由于(3)产生的CO_2气体为零,实际上,硫化物系统确定了反应器的pH。该观察结果使得可以根据反应器中H_2CO_3 *碱度的增加来确定所利用的有机物的碳含量,这可以通过滴定法简单地测量。%开普敦大学土木工程系水研究组,Rondebosch 7701,南非;开普敦大学土木工程系水研究小组,南非Rondebosch 7701;

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号