首页> 外文期刊>Water resources research >Field estimates of groundwater circulation depths in two mountainous watersheds in the western US and the effect of deep circulation on solute concentrations in streamflow
【24h】

Field estimates of groundwater circulation depths in two mountainous watersheds in the western US and the effect of deep circulation on solute concentrations in streamflow

机译:美国西部两个山区流域地下水循环深度的现场估算以及深层循环对水流中溶质浓度的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Estimates of groundwater circulation depths based on field data are lacking. These data are critical to inform and refine hydrogeologic models of mountainous watersheds, and to quantify depth and time dependencies of weathering processes in watersheds. Here we test two competing hypotheses on the role of geology and geologic setting in deep groundwater circulation and the role of deep groundwater in the geochemical evolution of streams and springs. We test these hypotheses in two mountainous watersheds that have distinctly different geologic settings (one crystalline, metamorphic bedrock and the other volcanic bedrock). Estimated circulation depths for springs in both watersheds range from 0.6 to 1.6 km and may be as great as 2.5 km. These estimated groundwater circulation depths are much deeper than commonly modeled depths suggesting that we may be forcing groundwater flow paths too shallow in models. In addition, the spatial relationships of groundwater circulation depths are different between the two watersheds. Groundwater circulation depths in the crystalline bedrock watershed increase with decreasing elevation indicative of topography-driven groundwater flow. This relationship is not present in the volcanic bedrock watershed suggesting that both the source of fracturing (tectonic versus volcanic) and increased primary porosity in the volcanic bedrock play a role in deep groundwater circulation. The results from the crystalline bedrock watershed also indicate that relatively deep groundwater circulation can occur at local scales in headwater drainages less than 9.0 km(2) and at larger fractions than commonly perceived. Deep groundwater is a primary control on streamflow processes and solute concentrations in both watersheds.
机译:缺乏根据野外数据估算地下水循环深度的方法。这些数据对于告知和完善山区流域的水文地质模型,以及量化流域中风化过程的深度和时间依赖性至关重要。在这里,我们测试了关于地质学和地质环境在深层地下水循环中的作用以及深层地下水在溪流和泉水地球化学演化中的作用的两个相互竞争的假设。我们在两个具有明显不同的地质环境(一个晶体,变质基岩和另一个火山岩基)的山区流域中检验了这些假设。两个流域中的弹簧的估计循环深度范围为0.6到1.6 km,可能高达2.5 km。这些估计的地下水循环深度比通常模拟的深度要深得多,这表明我们可能在模型中强迫地下水流动路径太浅。另外,两个流域之间地下水循环深度的空间关系也不同。结晶基岩流域中的地下水循环深度随着海拔高度的降低而增加,这表明地形驱动的地下水流动。火山基岩流域中不存在这种关系,这表明火山岩基岩的压裂源(构造与火山)和主要孔隙度的增加都在深层地下水循环中起作用。结晶基岩流域的结果还表明,在小于9.0 km(2)的源头排水系统中,局部规模可能会发生相对较深的地下水循环,且比通常认为的更大。深层地下水是流域和两个流域中溶质浓度的主要控制因素。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号