...
首页> 外文期刊>Waste Management >Optimization of elemental recovery from electronic wastes using a mild oxidizer
【24h】

Optimization of elemental recovery from electronic wastes using a mild oxidizer

机译:用温和氧化剂从电子废物中恢复的优化

获取原文
获取原文并翻译 | 示例
           

摘要

In this work, metals were recovered from electronic wastes under optimized conditions. The columnar extraction was used to increase the contact between the leachate solution and solid-state wastes. Industrial metals were recovered by an electrochemical process using a regenerated mild oxidizer under optimized operating parameters to enrich the metal concentrations and reduce waste generation. The maximum recovery rate (1.135 mgmin~(-1)) was recorded under the optimized conditions (160 Am~(-2) current density, 7 mL·min~(-1) leachate flow rate, and 0.8 mol·L~(-1) ferric concentration). The selective columnar extraction process was employed to extract gold, wherein the highest extraction efficiency (69.39%) was obtained under optimized conditions of 0.7 mol·L~(-1) thiourea, 0.6 mol·L~(-1) hydrochloric acid, 0.8 mol·L~(-1) ferric chloride, 120 min circulation time, and 6 mL-min"1 leachate flow rate. The adsorption process was used for the recovery of gold, which was investigated under the kinetic as well as equilibrium adsorption processes. The adsorption curves conformed to the Langmuir model and followed the first-order kinetics. The adsorption rate decreased with the increasing values of pH, temperature, adsorbent size, while the rate increased with the stirring speed and adsorbent quantity. Finally, acidic extraction under anaerobic and optimal conditions was performed to extract and selectively recover rare-earth elements. The rare-earth elements were initially precipitated in their sulfate forms and subsequently transformed into corresponding hydroxides and oxides. The total recovery efficiencies for cerium and neodymium were found to be 91.7% and 86.7%, respectively.
机译:在这项工作中,在优化条件下从电子废物中回收金属。使用柱状萃取来增加渗滤液溶液与固态废物之间的接触。通过在优化的操作参数下使用再生温和的氧化剂通过电化学方法回收工业金属,以富集金属浓度并减少废物产生。在优化条件下记录最大回收率(1.135 mgmin〜(-1))(160AM〜(-2)电流密度,7毫升·min〜(-1)渗滤液流速,0.8mol·L〜( -1)Ferric浓度)。采用选择性柱状萃取方法提取金,其中在优化的0.7mol·L〜(-1)硫脲的优化条件下获得最高提取效率(69.39%),0.6mol·L〜(-1)盐酸,0.8 Mol·L〜(-1)氯化铁,120分钟循环时间和6ml-min“1渗滤液流速。吸附过程用于回收金,在动力学以及平衡吸附过程下进行研究。吸附曲线符合Langmuir模型,然后遵循一阶动力学。吸附率随着pH值,温度,吸附剂尺寸的增加而降低,而速度随着搅拌速度和吸附量而增加。最后,酸性提取进行厌氧和最佳条件以提取和选择性地回收稀土元素。稀土元素最初以硫酸盐形式沉淀,随后转化成相应的氢氧化物和氧化物s。发现铈和钕的总回收效率分别为91.7%和86.7%。

著录项

  • 来源
    《Waste Management》 |2021年第11期|420-427|共8页
  • 作者单位

    Future Innovation & Research in Science and Technology Faculty of Engineering Chulalongkorn University Bangkok 10330 Thailand;

    Department of Environmental Engineering Faculty of Engineering Chulalongkorn University Bangkok 10330 Thailand;

    Department of Electrical Engineering Faculty of Engineering Chulalongkom University Bangkok 10330 Thailand;

    Future Innovation & Research in Science and Technology Faculty of Engineering Chulalongkorn University Bangkok 10330 Thailand;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Electronic waste; Electrochemical process; Mild oxidizer; Metal recovery; Rare-earth element;

    机译:电子垃圾;电化学过程;轻度氧化剂;金属恢复;稀土元素;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号