...
首页> 外文期刊>Waste Management >Turning carbon-ZnMn_2O_4 powder in primary battery waste to be an effective active material for long cycling life supercapacitors: In situ gas analysis
【24h】

Turning carbon-ZnMn_2O_4 powder in primary battery waste to be an effective active material for long cycling life supercapacitors: In situ gas analysis

机译:在初级电池废物中转动碳 - ZnMN_2O_4粉末是一种用于长循环寿命超级电容器的有效活性材料:原位气体分析

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

A simple and chemical-free recycled carbon-ZnMn_2O_4 powder (composite) from the spent Zn-carbon batteries is proposed as an effective active material for the supercapacitor. This approach may amplify the economic and environmental benefits of the recycling process. We also synthesized the spherical MnO_x nanoparticles by the calcination followed by the chemical treatment. Recycled composite and the MnO_x nanoparticles were comprehensively characterized. Symmetrical supercapacitors with the composite and the MnO_x nanoparticles show specific capacitances of 118 F g~(-1) and 88 F g~(-1) at 0.1 A g~(-1) respectively. Also, the supercapacitor with the composite offers a specific energy of 8.0 Wh kg~(-1) at 0.1 A g~(-1) while 4.3Wh kg~(-1) is obtained for MnO_x nanoparticles. The stable cell potential limits of 1.4 Ⅴ and 1.2 Ⅴ were established for the supercapacitors of the composite and MnO_x nanoparticles with the capacitance retention of 83% and 96%, respectively at the end of 100,000 cycles at 2.5 A g~(-1) Also, the excellent energy efficiencies of 80% and 72% with the coulombic efficiency of 100% are estimated for the supercapacitors of the composite and the MnO_x nanoparticles, respectively. Finally, in situ gas analysis of the symmetrical supercapacitors are carried out using the differential electrochemical mass spectrome-try. The proposed approach may be more economical and the environmentally benign recycling of spent Zn-carbon battery for circular economy and sustainability.
机译:从废Zn-碳电池中提出了一种简单而无化的无化的再生碳-ZNMN_2O_4粉末(复合材料)作为超级电容器的有效活性材料。这种方法可以放大回收过程的经济和环境效益。我们还通过煅烧合成球形MnO_X纳米颗粒,然后用化学处理合成。再循环复合材料和MNO_X纳米粒子综合表征。具有复合材料和MnO_X纳米颗粒的对称超级电容器分别显示出0.1Ag〜(-1)的118f g〜(-1)和88f g〜(-1)的特异性电容。此外,具有复合材料的超级电容器提供8.0WH kg〜(-1)的特定能量,而在0.1ag〜(-1),而4.3wh kg〜(-1)是用于MnO_x纳米颗粒。建立了1.4‰和1.2‰的稳定电池电位限制,为复合材料和MnO_x纳米粒子的超级电容器建立了83%和96%的电容保留,分别在100,000次循环的末端,同时也是如此,估计复合材料和MNO_X纳米颗粒的超级电容器估计了80%和72%的优异能量效率为100%。最后,使用差分电化学质谱 - 试图进行对称超级电容器的原位气体分析。该拟议的方法可能更经济,而且对循环经济和可持续性的废旧碳电池的环境良好回收。

著录项

  • 来源
    《Waste Management》 |2020年第5期|202-211|共10页
  • 作者单位

    Centre of Excellence for Energy Storage Technology (CEST) Department of Chemical and Biomolecular Engineering School of Energy Science and Engineering Vidyasirimedhi Institute of Science and Technology Rayong 21210 Thailand;

    Centre of Excellence for Energy Storage Technology (CEST) Department of Chemical and Biomolecular Engineering School of Energy Science and Engineering Vidyasirimedhi Institute of Science and Technology Rayong 21210 Thailand;

    Centre of Excellence for Energy Storage Technology (CEST) Department of Chemical and Biomolecular Engineering School of Energy Science and Engineering Vidyasirimedhi Institute of Science and Technology Rayong 21210 Thailand;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Sustainability; Zinc-carbon battery; In situ gas analysis; MnO_x nanoparticles; Supercapacitors; Recycling;

    机译:可持续性;锌 - 碳电池;原位气体分析;mno_x纳米粒子;超级电容器;回收;

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号