首页> 外文期刊>Tunnelling and underground space technology >A mine shaft case study on the accurate prediction of yield and displacements in stressed ground using lab-derived material properties
【24h】

A mine shaft case study on the accurate prediction of yield and displacements in stressed ground using lab-derived material properties

机译:矿井案例的实验室衍生材料特性准确预测受压地面屈服和位移

获取原文
获取原文并翻译 | 示例
           

摘要

Continuum models provide a useful tool for the prediction of stress re-distribution due to excavation and induced yielding, and are used as a key analysis tool in the design of many underground excavations. Recent developments in the study of rock strength and post-yield behaviour have played a key role in improving our understanding of how plastic constitutive models can also be used to practically replicate observed phenomena in brittle rocks. In particular, new models for rock dilatancy can help to improve the applicability of plastic constitutive models as a predictive tool for excavation design. In this study, laboratory data for a heterogeneous, brittle, conglomerate unit from a mine shaft has been analysed. Using parameters from this analysis, brittle strength and dilatancy models have been implemented in a finite-difference code to predict not only stress re-distribution and yield around the shaft, but also to obtain realistic displacement values. Comparison of the modelling results to displacements measured using borehole extensometers show that the constitutive model and lab-derived parameters used were effective in predicting the rockmass behaviour. Parameters were further optimized through back analysis. One interesting finding of this analysis is that the in-situ rockmass dilation decay rate (as a function of plastic strain) appears to be faster than estimated based on laboratory data, which may be indicative of the influence of rockmass-scale natural fractures and other geological structures on the dilation decay process. It also appears possible to model the in-situ dilation decay rate using a single parameter, instead of separate parameters for unconfined and confined conditions. To conclude the study, more numerical results obtained using alternative dilatancy models are presented to illustrate the problem of non-uniqueness in plasticity back analyses. (C) 2015 Elsevier Ltd. All rights reserved.
机译:连续体模型为预测由于开挖和诱导的屈服而引起的应力重新分布提供了有用的工具,并且在许多地下开挖的设计中用作关键分析工具。岩石强度和屈服后行为研究的最新进展在增进我们对如何将塑性本构模型也可用于实际复制脆性岩石中所观察到的现象的理解中发挥了关键作用。特别是,岩石膨胀性的新模型可以帮助改善塑性本构模型作为开挖设计的预测工具的适用性。在这项研究中,已经分析了来自矿井的异质,脆性,砾岩单元的实验室数据。使用此分析中的参数,已经在有限差分代码中实现了脆性强度和剪胀模型,不仅可以预测轴周围的应力重新分布和屈服,还可以获取实际的位移值。将建模结果与使用钻孔引伸计测量的位移进行比较,结果表明,所使用的本构模型和实验室得出的参数可有效预测岩体行为。通过反向分析进一步优化了参数。该分析的一个有趣发现是,原位岩体膨胀衰减速率(作为塑性应变的函数)似乎快于根据实验室数据所估计的速度,这可能表明岩体规模的自然裂缝和其他因素的影响。地质构造上的膨胀衰减过程。似乎也可以使用单个参数代替非约束和受限条件的单独参数对原位膨胀衰减率进行建模。为了结束研究,提出了使用替代剪胀模型获得的更多数值结果,以说明塑性可逆分析中的非唯一性问题。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号