首页> 外文期刊>Tunnelling and underground space technology >Scaling rockburst hazard using the DDA and GSI methods
【24h】

Scaling rockburst hazard using the DDA and GSI methods

机译:使用DDA和GSI方法缩放摇滚危险

获取原文
获取原文并翻译 | 示例
           

摘要

We examine the influence of rock mass quality, as scaled by the Geological Strength Index (GSI), on energy redistribution in tunnels driven through discontinuous rock masses. We assume that in blocky rock masses rockbursts develop as abrupt motion of finite rigid blocks along pre-existing discontinuities rather than by fracture of intact rock elements. We begin by formulating analytically the local energy density around a tunnel in continuous, homogenous, isotropic, linear-elastic medium and demonstrate the significance of the initial principal stress ratio on the result. We then introduce discontinuities into the rock mass and find analytically the peak acceleration of an ejected keyblock when it flies into the tunnel space, to demonstrate the viability of this mechanism as a potential rockbursting source. Using the numerical discontinuous deformation analysis (DDA) method we find the total kinetic energy released during rockbursting and validate our DDA results using monitored seismic energy emissions detected during an intensive rockburst event encountered while excavating one of the headrace tunnels at Jinping II hydroelectric project in China. Utilizing an analytical solution we published earlier for the redistribution of energy components due to tunneling, we explore the effect of rock mass quality as scaled by GSI on the elastic strain energy, dissipated energy, and kinetic energy. We find that the elastic strain energy and the energy dissipated by shear generally decrease with increasing GSI value. The kinetic energy of rockbursts however shows a more complicated behavior. It is low at low quality rock masses, peaks at GSI value of about 60, and decreases again with increasing rock mass quality. This result is supported by documented rockbursts during excavation of the deep tunnels of the Jinping II hydropower project, where the majority of rockbursts were recorded in tunnel segments with characteristic GSI values between 60 and 75.
机译:我们研究了岩石质量的影响,如地质强度指数(GSI)的缩放,通过不连续岩石驱动的隧道中的能量再分配。我们认为,在块状岩石群众中,摇滚笨蛋沿着预先存在的不连续性而不是完整的岩石元素的骨折发展。我们首先在连续,均匀,各向同性,线性弹性介质中分析隧道周围的局部能量密度,并证明了初始主应力比的重要性。然后,我们将不连续性引入岩石质量,并在其飞行到隧道空间时,发现喷射键盘的峰值加速度,以证明这种机制作为潜在的摇滚源的可行性。使用数值不连续变形分析(DDA)方法,我们发现在摇摇晃晃期间释放的总动能,并使用监测的地震能量排放在遭遇密集的岩石事件期间遇到的受监测的地震能量排放期间验证我们的DDA结果,同时在中国的锦平II水力发电项目中的一个头部隧道之一挖掘。利用我们之前公布的分析解决方案因隧道引起的能量分量再分配而发布,我们探讨了岩体质量质量,如GSI缩小的弹性应变能量,消散能量和动能。我们发现弹性应变能量和通过剪切散发的能量通常随着GSI值的增加而降低。然而,摇滚笨蛋的动能显示出更复杂的行为。它低于低质量岩体,GSI值约为60的峰值,并随着岩石质量的增加而再次降低。该结果由记录后的摇滚笨蛋在挖掘金平II水电项目的挖掘过程中,其中大多数摇滚症被记录在隧道段,具有60至75之间的特征GSI值。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号