首页> 外文期刊>Tunnelling and underground space technology >Failure tests and bearing performance of prototype segmental linings of shield tunnel under high water pressure
【24h】

Failure tests and bearing performance of prototype segmental linings of shield tunnel under high water pressure

机译:高水压下盾构隧道分段衬砌的破坏试验及承载性能

获取原文
获取原文并翻译 | 示例
           

摘要

The occurrence and characteristics of structural failure under high water pressure and the evaluation of structural bearing capacity are of great significance in the rational design of shield tunnels. In this study, the failure process of two types of segmental lining structures used in the Shiziyang Tunnel in China, namely, the straight joint assembly structure (STRS) and staggered joint assembly structure (STGS), are investigated and summarized with prototype tests. The differences in the failure characteristics between the two types of lining structures are observed and analyzed, and two indexes are proposed to evaluate the damage status of the entire structure and local structure by analyzing and interpreting the failure phenomena during the tests. The results show that (1) The failure processes of both STRS and STGS under high water pressure perform as: the accumulation of previous occurred strength damage of segments ultimately leads to the displacement instability failure of structure. However, the difference is that besides the occurrence of large number longitudinal penetrating cracks at segments, there are local crushing and shear cracks occurred at the joints in STRS. (2) The failure processes of STRS and STGS under high water pressure can be divided into three stages: normal deformation stage, strength damage stage, and displacement instability stage. (3) With the proposed two indexes, the failure phenomena and structural bearing capacities at various stages of the failure process can be theoretically analyzed and quantitatively evaluated. The effective stiffness coefficient beta(e) (specifically, beta(te) for STRS and beta(ce) for STGS) is recommended to assess the structural bearing status, and the residual bearing capacity coefficient R-bc is suggested to evaluate the residual structural bearing capacity. (4) For STRS, when obvious cracks appear, beta(te) is 0.83 and R-bc is 0.71; when significant deformation occurs, beta(te) is 0.65 and R-bc is 0.52; and when the structure fails, beta(te) is 0.4 and R-bc is 0.35. For STGS, when microcracks appear, beta(ce) is 0.67 and R-bc is 0.58; when the structure is significantly deformed, beta(ce) is 0.49 and R-bc is 0.43; and when the structure fails, beta(ce) is 0.18 and R-bc is 0.27. (5) In the loading process, beta(e) and R-bc of STRS and STGS decrease constantly. For STRS, the two indexes rapidly decline after visible cracks appear, but for STGS, the decreasing amplitude is relatively small.
机译:高水压下结构破坏的发生,特征以及结构承载力的评估对盾构隧道的合理设计具有重要意义。在这项研究中,研究了在中国石子阳隧道中使用的两种节段衬砌结构的破坏过程,并进行了原型试验,总结了直缝装配结构(STRS)和交错缝装配结构(STGS)。观察并分析了两种衬砌结构的破坏特性差异,提出了两种指标,通过对测试过程中的破坏现象进行分析和解释,评价整体结构和局部结构的破坏状态。结果表明:(1)STRS和STGS在高水压下的破坏过程表现为:段的先前发生的强度破坏的积累最终导致结构的位移失稳破坏。但是,不同之处在于,在分段中除了出现大量的纵向穿透裂纹外,在STRS的接头处还出现了局部压裂和剪切裂纹。 (2)高水压下STRS和STGS的破坏过程可分为三个阶段:正常变形阶段,强度破坏阶段和位移不稳定阶段。 (3)利用提出的两个指标,可以对破坏过程各个阶段的破坏现象和结构承载力进行理论分析和定量评估。建议使用有效刚度系数beta(e)(特别是对于STRS的beta(te)和对于STGS的beta(ce))来评估结构的承载状态,并建议使用残余承载力系数R-bc来评估残余的结构承载能力。 (4)对于STRS,当出现明显裂纹时,β(te)为0.83,R-bc为0.71;当发生明显变形时,β(te)为0.65,R-bc为0.52;当结构失效时,beta(te)为0.4,R-bc为0.35。对于STGS,当出现微裂纹时,β(ce)为0.67,R-bc为0.58;当结构明显变形时,β(ce)为0.49,R-bc为0.43;当结构失效时,beta(ce)为0.18,R-bc为0.27。 (5)在加载过程中,STRS和STGS的beta(e)和R-bc不断减小。对于STRS,这两个指标在出现可见裂纹后迅速下降,但对于STGS,下降幅度相对较小。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号