首页> 外文期刊>Tunnelling and underground space technology >Improved foam application at the tunnel face with large ventilation volume and low pressure supplied water
【24h】

Improved foam application at the tunnel face with large ventilation volume and low pressure supplied water

机译:大通风量和低压供水,改善了在隧道工作面的泡沫应用

获取原文
获取原文并翻译 | 示例
           

摘要

Due to large energy loss, current foam technology for dust suppression requires high inlet water pressure, but performance is poor where ventilation volume is high. This paper proposes modifying key foam device components, including the agent mixing device, foam generator, and nozzle, to address these problems. A cavitating jet pump was simultaneously employed for accurate agent mixing and flow meter, guaranteeing accurate agent flow and low energy loss. A vertical foam generator was designed to increase foam volume and ensure even foam distribution among the foam nozzles. The two-layered foam nozzles were designed and fabricated using 3D printing to ensure even and thick foam impact area on the dust source, effectively blocking dust escape passages. Experiments were performed in the laboratory and on a real heading face. Ventilation volume was 560-570 m(3)/ min for the field experiment with initial total dust concentration 589-679 mg/m(3). The proposed system reduced required inlet water pressure to 0.87 MPa, while achieving 86.8% average total dust suppression efficiency and reducing long-term time average respirable dust concentration to 3.9-5.7 mg/m(3). This study will help improve performance and expand application fields for foam dust suppression technology.
机译:由于大量的能量损失,当前用于抑尘的泡沫技术需要较高的进水压力,但在通风量较大的地方性能较差。本文提出修改关键的泡沫装置组件,包括试剂混合装置,泡沫发生器和喷嘴,以解决这些问题。同时使用空化射流泵进行精确的药剂混合和流量计,以确保精确的药剂流量和低能量损失。立式泡沫发生器的设计旨在增加泡沫量,并确保泡沫喷嘴之间的泡沫均匀分布。两层泡沫喷嘴使用3D打印进行设计和制造,以确保泡沫在灰尘源上的撞击区域均匀且厚实,从而有效地阻止了灰尘逸出通道。实验是在实验室和真实的头部进行的。现场试验的通风量为560-570 m(3)/ min,初始总粉尘浓度为589-679 mg / m(3)。拟议的系统将所需的进水压力降低到0.87 MPa,同时实现了平均总粉尘抑制效率的86.8%,并将长期平均可吸入粉尘浓度降低到3.9-5.7 mg / m(3)。这项研究将有助于改善性能并扩展泡沫抑尘技术的应用领域。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号