...
首页> 外文期刊>Transportation research >Integration of real-time traffic management and train control for rail networks - Part 2: Extensions towards energy-efficient train operations
【24h】

Integration of real-time traffic management and train control for rail networks - Part 2: Extensions towards energy-efficient train operations

机译:铁路网实时交通管理与列车控制的集成-第2部分:扩展节能列车运行

获取原文
获取原文并翻译 | 示例
           

摘要

We study the integration of real-time traffic management and train control by using mixed-integer nonlinear programming (MINLP) and mixed-integer linear programming (MILP) approaches. In Part 1 of the paper (Luan et al., 2018), three integrated optimization problems, namely the P-NLP problem (NLP: nonlinear programming), the P-PWA problem (PWA: piecewise affine), and the P-TSPO problem (TSPO: train speed profile option), have been developed for real-time traffic management that inherently include train control. A two-level approach and a custom-designed two-step approach have been proposed to solve these optimization problems. In Part 2 of the paper, aiming at energy-efficient train operation, we extend the three proposed optimization problems by introducing energy-related formulations. We first evaluate the energy consumption of a train motion. A set of nonlinear constraints is first proposed to calculate the energy consumption, which is further reformulated as a set of linear constraints for the P-TSPO problem and approximated by using a piecewise constant function for the PNLP and PPWA problems. Moreover, we consider the option of regenerative braking and present linear formulations to calculate the utilization of the regenerative energy obtained through braking trains. We focus on two objectives, i.e., delay recovery and energy efficiency, through using a weighted-sum formulation and an epsilon-constraint formulation. With these energy-related extensions, the nature of the three optimization problems remains same to Part 1. In numerical experiments conducted based on the Dutch test case, we consider the P-NLP approach and the P-TSPO aspects; the P-PWA approach is neglected due to its bad performance, as evaluated in Part 1. According to the experimental results, the P-TSPO approach still yields a better performance within the required computation time. The trade-off between train delay and energy consumption is investigated. The results show the possibility of reducing train delay and saving energy at the same time through managing train speed, by up to 4.0% and 5.6% respectively. In our case study, applying regenerative braking leads to a 22.9% reduction of the total energy consumption. (C) 2018 Elsevier Ltd. All rights reserved.
机译:我们使用混合整数非线性规划(MINLP)和混合整数线性规划(MILP)方法研究实时交通管理和列车控制的集成。在论文的第1部分(Luan等人,2018)中,三个集成优化问题分别是P-NLP问题(NLP:非线性规划),P-PWA问题(PWA:分段仿射)和P-TSPO问题(TSPO:火车速度配置文件选项)已经开发用于实时交通管理,而固有地包括火车控制。已经提出了两种方法和定制设计的两步方法来解决这些优化问题。在本文的第2部分中,针对节能火车运行,我们通过引入与能源有关的公式扩展了三个提出的优化问题。我们首先评估火车运动的能量消耗。首先提出了一组非线性约束条件来计算能量消耗,然后将其进一步重构为针对P-TSPO问题的一组线性约束条件,并使用针对PNLP和PPWA问题的分段常数函数进行近似。此外,我们考虑了再生制动的选项,并提出了线性公式来计算通过制动列车获得的再生能量的利用率。我们通过使用加权和公式和epsilon约束公式集中在两个目标上,即延迟恢复和能源效率。通过这些与能源有关的扩展,三个优化问题的性质与第1部分相同。在基于荷兰测试用例的数值实验中,我们考虑了P-NLP方法和P-TSPO方面。如第1部分所述,由于P-PWA方法的性能较差而被忽略了。根据实验结果,P-TSPO方法在所需的计算时间内仍能产生更好的性能。研究了列车延误与能耗之间的权衡。结果表明,通过管理火车速度,可以同时减少火车延误和节省能源,分别达到4.0%和5.6%。在我们的案例研究中,采用再生制动可将总能耗降低22.9%。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号