...
首页> 外文期刊>Solar Energy >Numerical determination of adequate air gaps for building-integrated photovoltaics
【24h】

Numerical determination of adequate air gaps for building-integrated photovoltaics

机译:用于建筑物集成光伏系统的足够气隙的数值确定

获取原文
获取原文并翻译 | 示例
           

摘要

The efficiency of photovoltaic (PV) devices is approximately inversely proportional to the cell temperature and the air gap of PV modules over or beside a building envelope can facilitate ventilation cooling of building-integrated photovoltaics. The effect of gap size on the performance of one type of PV module (with dimensions 1209 × 537 × 50 mm) in terms of cell temperature has been determined numeri cally for a range of roof pitches and panel lengths under two different settings of solar heat gains. It has been found that under constant solar heat gain, the air velocity behind PV modules due to natural convection in general increases with roof pitch angle. For a given location where solar heat gain varies with inclination from horizontal plane, however, the air velocity increases up to a pitch angle of about 60 degrees and then decreases with increasing roof pitch. The mean and maximum PV temperatures decrease with the increase in pitch angle and air gap. The mean PV temperature also decreases with increasing panel length for air gaps greater than or equal to 0.08 m, whereas the maximum PV temperature generally increases with panel length but decreases when the length of a roof-mounted panel increases from two modules to three modules and the air gap is between 0.1 and 0.11 m. Without adequate air circulation, overheating of PV modules would occur and hot spots could form near the top of modules with potential cell temperatures over 80 ℃ above ambient air temperature under bright sunshine.
机译:光伏(PV)装置的效率与电池温度大致成反比,并且在建筑物围护结构上方或旁边的PV模块的气隙可促进建筑物集成光伏系统的通风冷却。在两种不同的太阳能加热设置下,已经确定了一系列屋顶间距和面板长度的数值,间隙尺寸对一种类型的光伏模块(尺寸为1209×537×50 mm)的性能的影响取决于电池温度收获。已经发现,在恒定的太阳热量获取下,由于自然对流而导致的PV模块后面的空气速度通常随着屋顶俯仰角而增加。但是,对于给定的位置,其中太阳热量的获取与水平面的倾斜度发生变化,风速增加到大约60度的俯仰角,然后随着车顶俯仰角的增加而减小。随着桨距角和气隙的增加,平均和最高PV温度降低。对于大于或等于0.08 m的气隙,平均PV温度也会随着面板长度的增加而降低,而最大PV温度通常随面板长度的增加而升高,但是当屋顶安装面板的长度从两个模块增加到三个模块时,最高PV温度会降低。气隙在0.1到0.11 m之间。如果没有足够的空气流通,光伏组件将发生过热,并且在组件顶部附近可能会形成热点,在阳光直射的情况下,电池的潜在温度将比环境空气温度高80℃。

著录项

  • 来源
    《Solar Energy》 |2009年第8期|1253-1273|共21页
  • 作者

    Guohui Gan;

  • 作者单位

    School of the Built Environment, University of Nottingham, University Park, Nottingham NG7 2RD, UK;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    photovoltaics; air gap; roof pitch; building envelope; solar heat gain; CFD;

    机译:光伏气隙;屋顶间距;建筑围护结构;太阳热量获取;差价合约;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号