...
首页> 外文期刊>Solar Energy >A highly efficient light-trapping structure for thin-film silicon solar cells
【24h】

A highly efficient light-trapping structure for thin-film silicon solar cells

机译:用于薄膜硅太阳能电池的高效捕光结构

获取原文
获取原文并翻译 | 示例
           

摘要

A highly efficient light-trapping structure, consisting of a diffractive grating, a distributed Bragg reflector (DBR) and a metal reflector was proposed. As an example, the proposed light-trapping structure with an indium tin oxide (ITO) diffraction grating, an a-Si:H/ITO DBR and an Ag reflector was optimized by the simulation via rigorous coupled-wave analysis (RCWA) for a 2.0-μm-thick c-Si solar cell with an optimized ITO front antireflection (AR) layer under the air mass 1.5 (AM1.5) solar illumination. The weighted absorptance under the AM1.5 solar spectrum (A_(AM1.5)) of the solar cell can reach to 69%, if the DBR is composed of 4 pairs of a-Si:H/ITOs. If the number of a-Si:H/ITO pairs is up to 8, a larger A_(AM1.5) of 72% can be obtained. In contrast, if the Ag reflector is not adopted, the combination of the optimized ITO diffraction grating and the 8-pair a-Si:H/ITO DBR can only result in an A_(AM1.5) of 68%. As the reference, A_(AM1.5) = 31% for the solar cell only with the optimized ITO front AR layer. So, the proposed structure can make the sunlight highly trapped in the solar cell. The adoption of the metal reflector is helpful to obtain highly efficient light-trapping effect with less number of DBR pairs, which makes that such light-trapping structure can be fabricated easily.
机译:提出了一种高效的光阱结构,该结构由衍射光栅,分布式布拉格反射器(DBR)和金属反射器组成。例如,通过严格的耦合波分析(RCWA)通过模拟优化了拟议的具有铟锡氧化物(ITO)衍射光栅,a-Si:H / ITO DBR和Ag反射器的光阱结构。 2.0μm厚的c-Si太阳能电池,在空气质量1.5(AM1.5)太阳光照下具有优化的ITO前减反射(AR)层。如果DBR由4对a-Si:H / ITO组成,则太阳能电池在AM1.5太阳光谱下的加权吸收率(A_(AM1.5))可以达到69%。如果a-Si:H / ITO对的数量最多为8,则可以获得72%的更大的A_(AM1.5)。相反,如果不采用银反射器,则优化的ITO衍射光栅和8对a-Si:H / ITO DBR的组合只能产生68%的A_(AM1.5)。作为参考,仅具有优化的ITO正面AR层的太阳能电池的A_(AM1.5)= 31%。因此,所提出的结构可以使太阳光高度捕获在太阳能电池中。金属反射器的采用有助于以更少的DBR对获得高效的光捕获效果,这使得可以容易地制造这种光捕获结构。

著录项

  • 来源
    《Solar Energy》 |2010年第1期|110-115|共6页
  • 作者单位

    Solar Cell Technology Group, Key Laboratory of Solar Thermal Energy and Photovoltaic System of Chinese Academy of Sciences, Institute of Electrical Engineering, The Chinese Academy of Sciences, Beijing 100190, China State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, The Chinese Academy of Sciences, Beijing 100083, China;

    State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, The Chinese Academy of Sciences, Beijing 100083, China;

    Solar Cell Technology Group, Key Laboratory of Solar Thermal Energy and Photovoltaic System of Chinese Academy of Sciences, Institute of Electrical Engineering, The Chinese Academy of Sciences, Beijing 100190, China;

    Solar Cell Technology Group, Key Laboratory of Solar Thermal Energy and Photovoltaic System of Chinese Academy of Sciences, Institute of Electrical Engineering, The Chinese Academy of Sciences, Beijing 100190, China;

    Solar Cell Technology Group, Key Laboratory of Solar Thermal Energy and Photovoltaic System of Chinese Academy of Sciences, Institute of Electrical Engineering, The Chinese Academy of Sciences, Beijing 100190, China;

    Solar Cell Technology Group, Key Laboratory of Solar Thermal Energy and Photovoltaic System of Chinese Academy of Sciences, Institute of Electrical Engineering, The Chinese Academy of Sciences, Beijing 100190, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    light-trapping; thin-film silicon solar cell; diffraction grating; distributed bragg reflector; metal reflector;

    机译:陷光;薄膜硅太阳能电池;衍射光栅分布式布拉格反射器金属反射器;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号