...
首页> 外文期刊>Solar Energy >Adding concentrated solar power plants to wind farms to achieve a good utility electrical load match
【24h】

Adding concentrated solar power plants to wind farms to achieve a good utility electrical load match

机译:在风电场中增加集中式太阳能发电厂,以达到良好的公用电力负荷匹配

获取原文
获取原文并翻译 | 示例
           

摘要

Texas has the greatest installed wind turbine capacity of any state in the United States, but as the percentage of wind generation approaches 10% of the utilities total electrical generation (in 2012, the total wind generated electricity in Texas was 7.4%), it becomes increasingly difficult for the utility to balance the electrical load due to the mismatch between the wind farm (WF) generated electricity and the utility electrical loading. In this paper WF output was shown to be diurnally and seasonally mismatched with the utility electrical loading in the Texas Panhandle (e.g. Texas Panhandle has the highest wind energy resource in Texas). In addition, the wind farm output in the Texas Panhandle does not normally contribute significantly at the peak hourly electrical load, and the peak hourly electrical load is a major deciding factor for a utility to add new power plants. A financial analysis was also performed on all the renewable energy systems analyzed. Various ratios of wind farm output to concentrating solar power (CSP) parabolic trough plant output (with 6 h of thermal storage) were calculated for the Texas Panhandle and compared to the utility electrical loading on an annual and peak monthly basis (each renewable energy system was analyzed at a 100 MW rating). The 67 MW wind farm and the 33 MW CSP plant with 6 h of thermal storage was approximately the best match to the utility electrical loading. The utility electrical load was also compared to: a 100 MW WF, a 100 MW CSP plant (with and without 6 h thermal storage), and finally the 67 MW WF with 33 MW CSP plant (with 6 h of thermal storage) on an annual, monthly, and peak hourly load basis. Typically for each month, the wind farm did not match the utility electrical loading except in the evening while the CSP plant (without storage) matched the utility electrical loading with the exception of in the evening. For the peak utility electrical loading months (July and August) and the days with the peak electrical loadings during those months, the 100 MW CSP plant with 6 h of thermal storage performed best in terms of supporting the utility electrical load (e.g. no wind farm). For the Texas Panhandle the estimated levelized cost of energy (LCOE) of a hybrid WF/CSP plant was in the range of $108/ MW h to S129/MW h while the WF only system was estimated to be S64/MW h, but the benefits of adding CSP may justify the additional cost. Although the Texas Panhandle was the only location analyzed for combining CSP plants with WFs, the analysis described in this paper can be used for other regions, states, or countries.
机译:得克萨斯州的装机容量是美国所有州中最大的,但随着风力发电比例接近公用事业总发电量的10%(2012年,得克萨斯州的风力发电总量为7.4%),由于风电场(WF)产生的电力与公用事业电力负荷之间的不匹配,公用事业难以平衡电力负荷。在本文中,WF的输出与德克萨斯州Panhandle的公用电力负荷在昼夜和季节上均不匹配(例如Texas Panhandle具有得克萨斯州最大的风能资源)。此外,德克萨斯州潘汉德尔的风力发电场输出通常在高峰时的用电负荷方面并没有显着贡献,高峰时的用电负荷是公用事业增加新电厂的主要决定因素。还对所分析的所有可再生能源系统进行了财务分析。计算了得克萨斯州Panhandle的风电场输出功率与聚光太阳能(CSP)抛物槽式发电厂功率(具有6h蓄热)的各种比率,并将其与年度和每月峰值的公用电力负荷进行比较(每个可再生能源系统)以100兆瓦的额定功率进行分析)。 67兆瓦的风电场和33兆瓦的CSP电厂具有6小时的蓄热能力,与公用电力负荷最接近。还比较了公用事业用电负载:一个100 MW WF,一个100 MW CSP装置(有和没有6 h蓄热),最后是带有33 MW CSP装置(有6 h蓄热)的67 MW WF。年度,每月和高峰小时负荷基准。通常每个月的风电场都与晚上的电力负荷不匹配,除了晚上,而CSP工厂(无存储)与晚上的电力负荷相匹配。在公用事业用电高峰月份(7月和8月)以及这几个月中高峰用电的日子中,在支持公用事业用电方面(例如,无风电场),具有6小时蓄热能力的100 MW CSP电厂表现最佳。 )。对于得克萨斯州Panhandle,混合WF / CSP电厂的平均能源成本(LCOE)估计在$ 108 / MW h至S129 / MW h的范围内,而仅WF的系统估计为S64 / MW h,但是添加CSP的好处可能会证明增加了成本。尽管只有德克萨斯州潘汉德尔(Texas Panhandle)分析了将CSP工厂与WF结合使用的唯一位置,但本文中描述的分析也可以用于其他地区,州或国家。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号