...
首页> 外文期刊>Solar Energy >Spatial and temporal modeling of sub- and supercritical thermal energy storage
【24h】

Spatial and temporal modeling of sub- and supercritical thermal energy storage

机译:亚临界和超临界热能存储的时空建模

获取原文
获取原文并翻译 | 示例
           

摘要

This paper describes a thermodynamic model that simulates the discharge cycle of a single-tank thermal energy storage (TES) system that can operate from the two-phase (liquid-vapor) to supercritical regimes for storage fluid temperatures typical of concentrating solar power plants. State-of-the-art TES design utilizes a two-tank system with molten nitrate salts; one major problem is the high capital cost of the salts (International Renewable Energy Agency, 2012). The alternate approach explored here opens up the use of low-cost fluids by considering operation at higher pressures associated with the two-phase and supercritical regimes. The main challenge to such a system is its high pressures and temperatures which necessitate a relatively high-cost containment vessel that represents a large fraction of the system capital cost. To mitigate this cost, the proposed design utilizes a single-tank TES system, effectively halving the required wall material. A single-tank approach also significantly reduces the complexity of the system in comparison to the two-tank systems, which require expensive pumps and external heat exchangers. A thermodynamic model is used to evaluate system performance; in particular it predicts the volume of tank wall material needed to encapsulate the storage fluid. The transient temperature of the tank is observed to remain hottest at the storage tank exit, which is beneficial to system operation. It is also shown that there is an optimum storage fluid loading that generates a given turbine energy output while minimizing the required tank wall material. Overall, this study explores opportunities to further improve current solar thermal technologies. The proposed single-tank system shows promise for decreasing the cost of thermal energy storage.
机译:本文介绍了一种热力学模型,该模型可模拟单罐热能存储(TES)系统的放电周期,该系统可以从两相(液体-蒸汽)运行到超临界状态,以存储太阳能发电厂的典型存储流体温度。先进的TES设计采用带熔融硝酸盐的两罐系统;一个主要问题是盐的高资本成本(国际可再生​​能源署,2012)。本文探讨的另一种方法是通过考虑在与两相和超临界状态相关的更高压力下运行来开辟低成本流体的使用。这种系统的主要挑战是其高压和高温,这需要相对高成本的安全壳,其占系统资本成本的很大一部分。为了减轻此成本,建议的设计采用了单罐TES系统,可将所需墙体材料有效地减半。与需要昂贵的泵和外部热交换器的两罐系统相比,单罐方法还大大降低了系统的复杂性。热力学模型用于评估系统性能;特别地,它预测了封装存储流体所需的罐壁材料的体积。观察到水箱的瞬态温度在储水箱出口处保持最热,这对系统操作很有帮助。还显示出存在最佳的存储流体负载,该负载可生成给定的涡轮机能量输出,同时将所需的罐壁材料最小化。总的来说,这项研究探索了进一步改善当前太阳能热技术的机会。拟议的单罐系统显示出降低热能存储成本的希望。

著录项

  • 来源
    《Solar Energy》 |2014年第5期|402-410|共9页
  • 作者单位

    Mechanical and Aerospace Engineering Dept., University of California, Los Angeles, Los Angeles, CA, USA;

    Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA;

    Mechanical and Aerospace Engineering Dept., University of California, Los Angeles, Los Angeles, CA, USA;

    Mechanical and Aerospace Engineering Dept., University of California, Los Angeles, Los Angeles, CA, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Energy storage; Thermodynamic model; Transient behavior; Concentrating solar power;

    机译:储能;热力学模型;暂时行为;集中太阳能;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号