...
首页> 外文期刊>Solar Energy >Intrinsic defects and Na doping in Cu2ZnSnS4: A density-functional theory study
【24h】

Intrinsic defects and Na doping in Cu2ZnSnS4: A density-functional theory study

机译:Cu2ZnSnS4的固有缺陷和Na掺杂:密度泛函理论研究

获取原文
获取原文并翻译 | 示例
           

摘要

The quaternary Cu2ZnSnS4 (CZTS) is a promising material for the thin-film solar cell applications. However, because CZTS is only stabilized in a very small chemical-potential region and the defect formation is much more complicated compared to the ternary systems, it requires careful control of the thin-film solar cell preparation. We have performed a density-functional theory investigation on the intrinsic defects, defect complexes and Na doping in this complicated system. Our calculations show that the disorder and nonstoichiometry in the Cu-Zn plane induces a bandgap shrinkage of the material. From our calculated results for various defects and the doping rules, we rationalize why the experiments obtain high conversion efficiencies for the thin-film solar cells under the Cu-poor and Zn-rich conditions. The most possible defects which fulfill the experimental Cu-poor and Zn-rich conditions are V-Cu, rather than Zn-Cu. It is necessary to keep the Sn chemical potential moderate during the CZTS thin-film solar cell growth because the Sn-involved defects and defect complexes are generally harmful. We also find that Na doping is expected to increase the conductivity and improves the conversion efficiency of CZTS solar cells. The present study provides valuable insights into the defect physics of the complicated CZTS system and a theoretical basis for exploring its practical applications as thin-film solar cell absorbers. (c) 2015 Elsevier Ltd. All rights reserved.
机译:四元Cu2ZnSnS4(CZTS)是用于薄膜太阳能电池应用的有前途的材料。但是,由于CZTS仅稳定在很小的化学势区域中,并且与三元体系相比,缺陷形成要复杂得多,因此需要仔细控制薄膜太阳能电池的制备。我们已经对这种复杂系统中的固有缺陷,缺陷复合物和Na掺杂进行了密度泛函理论研究。我们的计算表明,Cu-Zn平面中的无序和非化学计量会引起材料的带隙收缩。从我们对各种缺陷和掺杂规则的计算结果中,我们合理地解释了为什么实验在贫铜和富锌条件下获得薄膜太阳能电池高转换效率的原因。满足实验中贫铜和富锌条件的最可能缺陷是V-Cu,而不是Zn-Cu。在CZTS薄膜太阳能电池的生长过程中,必须使Sn化学势保持适度,因为与Sn有关的缺陷和缺陷络合物通常是有害的。我们还发现,Na掺杂有望提高电导率并提高CZTS太阳能电池的转换效率。本研究为复杂的CZTS系统的缺陷物理提供了宝贵的见识,并为探索其作为薄膜太阳能电池吸收剂的实际应用提供了理论基础。 (c)2015 Elsevier Ltd.保留所有权利。

著录项

  • 来源
    《Solar Energy》 |2015年第6期|125-132|共8页
  • 作者单位

    Gen Res Inst Nonferrous Met, Beijing 100088, Peoples R China|Univ Sci & Technol Beijing, Beijing 100083, Peoples R China;

    Gen Res Inst Nonferrous Met, Beijing 100088, Peoples R China;

    Gen Res Inst Nonferrous Met, Beijing 100088, Peoples R China;

    Gen Res Inst Nonferrous Met, Beijing 100088, Peoples R China;

    Gen Res Inst Nonferrous Met, Beijing 100088, Peoples R China;

    Gen Res Inst Nonferrous Met, Beijing 100088, Peoples R China;

    Gen Res Inst Nonferrous Met, Beijing 100088, Peoples R China;

    Gen Res Inst Nonferrous Met, Beijing 100088, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    CZTS; First-principles calculations; Na doping; Defect transition levels;

    机译:CZTS;第一性原理计算;Na掺杂;缺陷过渡能级;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号