...
首页> 外文期刊>Solar Energy >A novel computational approach to combine the optical and thermal modelling of Linear Fresnel Collectors using the finite volume method
【24h】

A novel computational approach to combine the optical and thermal modelling of Linear Fresnel Collectors using the finite volume method

机译:一种使用有限体积方法将线性菲涅耳收集器的光学模型和热模型结合起来的新颖计算方法

获取原文
获取原文并翻译 | 示例
           

摘要

A computational approach is presented, which uses the finite volume (FV) method in the Computational Fluid Dynamics (CFD) solver ANSYS Fluent to conduct the ray tracing required to quantify the optical performance of a line concentration Concentrated Solar Power (CSP) receiver, as well as the conjugate heat transfer modelling required to estimate the thermal efficiency of such a receiver. A Linear Fresnel Collector (LFC) implementation is used to illustrate the approach. It is shown that the Discrete Ordinates method can provide an accurate solution to the Radiative Transfer Equation (RTE) if the shortcomings of its solution are resolved appropriately in the FY CFD solver. The shortcomings are due to false scattering and the so-called ray effect inherent in the FV solution. The approach is first evaluated for a 2-D test case involving oblique collimated radiation and then for a more complex 2-D LFC optical domain based on the FRESDEMO project. For the latter, results are compared with and validated against those obtained with the Monte Carlo ray tracer, SolTrace. The outcome of the FIT ray tracing in the LFC optical domain is mapped as a non-uniform heat flux distribution in the 3-D cavity receiver domain and this distribution is included in the FV conjugate heat transfer CFD model as a volumetric source. The result of this latter model is the determination of the heat transferred to the heat transfer fluid running in the collector tubes, thereby providing an estimation of the overall thermal efficiency. To evaluate the effectiveness of the phased approach in terms of accuracy and computational cost, the novel 2-D:3-D phased approach is compared with results of a fully integrated, but expensive 3-D optical and thermal model. It is shown that the less expensive model provides similar results and hence a large cost saving. The novel approach also provides the benefit of working in one simulation environment, i.e. ANSYS Workbench, where optimisation studies can be carried out to maximise the performance of linear CSP reflector layout and receiver configurations. (c) 2015 Elsevier Ltd. All rights reserved.
机译:提出了一种计算方法,该方法在计算流体动力学(CFD)求解器ANSYS Fluent中使用有限体积(FV)方法进行光线跟踪,以量化线浓度集中太阳能(CSP)接收器的光学性能,如下所示:以及估计这种接收器的热效率所需的共轭传热模型。线性菲涅尔收集器(LFC)实现用于说明该方法。结果表明,如果在FY CFD求解器中适当地解决了离散定标方法的缺点,则可以为辐射传递方程(RTE)提供准确的解决方案。缺点是由于虚假散射和FV解决方案固有的所谓射线效应造成的。首先根据涉及斜准直辐射的2D测试案例评估该方法,然后根据FRESDEMO项目评估更复杂的2D LFC光学域。对于后者,将结果与使用蒙特卡洛射线示踪剂SolTrace获得的结果进行比较并进行验证。 LFC光学域中FIT射线跟踪的结果被映射为3-D腔接收器域中的非均匀热通量分布,并且此分布作为体积源包含在FV共轭传热CFD模型中。后一个模型的结果是确定传递到在收集管中运行的传热流体的热量,从而提供总体热效率的估算。为了评估分阶段方法在准确性和计算成本方面的有效性,将新型2-D:3-D分阶段方法与完全集成但昂贵的3-D光学和热模型的结果进行了比较。结果表明,较便宜的模型可以提供相似的结果,因此可以节省大量成本。新颖的方法还提供了在一个模拟环境中工作的优势,即ANSYS Workbench,可以在其中进行优化研究以使线性CSP反射器布局和接收器配置的性能最大化。 (c)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号