首页> 外文期刊>Solar Energy >Quantum dot solar concentrator: Optical transportation and doping concentration optimization
【24h】

Quantum dot solar concentrator: Optical transportation and doping concentration optimization

机译:量子点太阳能集中器:光传输和掺杂浓度优化

获取原文
获取原文并翻译 | 示例
           

摘要

This research investigated optical transport properties, quantum dot doping, and size optimization for Quantum Dot Solar Concentrators (QDSCs) through correlating spectroscopic and electrical characterization, and model predictions. QDSC plates of 60 x 40 x 2 mm containing; 0.005, 0.01, 0.03, 0.05, and 0.07 wt% of CdSe/ZnS quantum dot were fabricated by a drop casting technique and the edges were optically smoothed by polishing. QD fluorescence emission transport properties in QDSC plates were examined with varying optical path-length using laser lines 405, 488 and 532 nm, and white light with a cut-off wavelength of 600 nm. Emerging fluorescence emission falls off as the optical path-length increases and the rate of fall-off is increased for higher QD concentration; the emission is nearly negligible above the 25 mm optical path-length for 0.05 and 0.07 wt% QDSC plates. Re-absorption is mainly responsible for reduced emission in lower QD concentration QDSCs for fixed optical path-lengths. In higher concentration QDSCs, scattering and re-absorption both contribute to the reduced emission, which is verified through the white light scattering profile of QDSCs. Emission is reduced by up to 70% for >20 mm optical path-length where emission is lost before reaching the edge. The optimum concentration of QD doping has been found while balancing the QDSC device dimensions, and also ensuring sufficient absorption of the incident light. (C) 2015 Elsevier Ltd. All rights reserved.
机译:这项研究通过关联光谱和电学表征以及模型预测研究了量子点太阳能聚光器(QDSC)的光学传输特性,量子点掺杂和尺寸优化。包含60 x 40 x 2毫米的QDSC板;通过滴铸技术制备了0.005、0.01、0.03、0.05和0.07wt%的CdSe / ZnS量子点,并且通过抛光对边缘进行了光学平滑。使用激光线405、488和532 nm,以及截止波长为600 nm的白光,通过改变光程长度来检查QDSC板中的QD荧光发射传输特性。随着较高的QD浓度,随着光程长度的增加,新兴的荧光发射会减少,并且衰减率会增加。对于0.05和0.07 wt%的QDSC板,在25 mm光路长度以上的发射几乎可以忽略不计。对于固定的光程长度,在较低QD浓度QDSC中,重新吸收主要负责减少发射。在较高浓度的QDSC中,散射和再吸收都有助于减少发射,这通过QDSC的白光散射曲线进行了验证。对于> 20 mm的光程长度,在达到边缘之前会丢失发射,因此发射最多可减少70%。在平衡QDSC器件尺寸并确保充分吸收入射光的同时,已找到QD掺杂的最佳浓度。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

  • 来源
    《Solar Energy》 |2015年第5期|552-561|共10页
  • 作者单位

    Dublin Inst Technol, Sch Phys, Dublin 08, Ireland;

    Univ Dublin Trinity Coll, Sch Engn, Dublin 2, Ireland;

    Dublin Inst Technol, Sch Phys, Dublin 08, Ireland;

    Dublin Inst Technol, Sch Phys, Dublin 08, Ireland;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Quantum dot solar concentrator; Quantum dot; Optical transportation;

    机译:量子点太阳能集中器量子点光传输;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号