...
首页> 外文期刊>Solar Energy >Exergy analysis and optimization of charging-discharging processes of latent heat thermal energy storage system with three phase change materials
【24h】

Exergy analysis and optimization of charging-discharging processes of latent heat thermal energy storage system with three phase change materials

机译:三相变材料潜热储热系统的火用分析与充放电工艺优化

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper, a mathematical model for the overall exergy efficiency of combined charging discharging processes of three phase change materials (PCMs) named PCM1, PCM2, PCM3 and different heat transfer fluid (HTF, the solar field HTF and thermal energy storage (TES) system HTF are different) has been developed. The model takes into consideration the effects of inlet temperatures and the number of heat transfer units (NTUs) of the solar field HTF and the TES system HTF on the maximum overall exergy efficiency and the optimum melting temperatures of PCM1, PCM2 and PCM3. The analysis is based on a lumped model for the PCMs which assumes that a PCM is a thermal reservoir with a constant temperature of its melting point and a distributed model for the solar field HTF and the TES system HTF which assume that their temperatures vary in their flow path. The results show that the maximum overall exergy efficiency can be improved by increasing the NTUs of either the solar field HTF or the TES system HTF which is not more than 5. It is found that, for the TES system HTF, increasing its inlet temperature can increase the maximum overall exergy efficiency, however, for the solar field HTF, only when the NTUs of the solar field HTF and the TES system HTF are both more than 2, increasing its inlet temperature can increase the maximum overall exergy efficiency. It is also found that, compared to increasing the NTUs of the TES system HTF, increasing the NTUs of the solar field HTF is more efficient in improving the maximum overall exergy efficiency. Considering actual application of solar thermal power, we suggest that inlet temperature ranges of the solar field HTF and the TES system HTF should be 800-1200 K and 350-400 K, respectively, and the ranges of the NTUs of PCM1, PCM2 and PCM3 should be 4-5, correspond to the ranges of T-m1.opt, T-m2.opt and T-m3.opt are 750-850 K, 550-600 K, 450-500 K, respectively. The present analysis provides theoretical guidance for application of three PCMs storage system for solar thermal power. (C) 2015 Elsevier Ltd. All rights reserved.
机译:本文建立了一个数学模型,用于名为PCM1,PCM2,PCM3的三种相变材料(PCM)和不同的传热流体(HTF,太阳场HTF和热能存储(TES))的组合充放电过程的总火用效率系统HTF是不同的)。该模型考虑了入口温度以及太阳能场HTF和TES系统HTF的传热单位(NTU)数量对PCM1,PCM2和PCM3的最大总火用效率和最佳熔化温度的影响。该分析基于PCM的集总模型,该模型假设PCM是一个具有恒定熔点温度的蓄热器,并且基于太阳场HTF和TES系统HTF的分布式模型,假设它们的温度在流动路径。结果表明,通过增加不超过5的太阳场HTF或TES系统HTF的NTU可以提高最大总火用效率。发现,对于TES系统HTF,提高其入口温度可以但是,对于太阳场HTF,只有当太阳场HTF和TES系统HTF的NTU都大于2时,增加其入口温度才能提高最大总火用效率。还发现,与增加TES系统HTF的NTU相比,增加太阳场HTF的NTU可以更有效地提高最大的总火用效率。考虑到太阳能的实际应用,我们建议太阳能场HTF和TES系统HTF的入口温度范围应分别为800-1200 K和350-400 K,以及PCM1,PCM2和PCM3的NTU范围应为4-5,分别与T-m1.opt,T-m2.opt和T-m3.opt的范围相对应。分别为750-850 K,550-600 K和450-500K。本分析为太阳能热电三个PCM存储系统的应用提供了理论指导。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号