...
首页> 外文期刊>Solar Energy >Simulating clear-sky index increment correlations under mixed sky conditions using a fractal cloud model
【24h】

Simulating clear-sky index increment correlations under mixed sky conditions using a fractal cloud model

机译:使用分形云模型模拟混合天空条件下的晴空指数增量相关性

获取原文
获取原文并翻译 | 示例
           

摘要

Modelling clear-sky index increments (i.e. changes in normalized surface irradiance over specified intervals of time) and their spatial autocorrelation structures is important for the reliable grid integration of photovoltaic power systems. In order to capture increment correlation structures under mixed sky conditions, we apply a fractal cloud model. First, we use thousands of fish-eye sky camera and satellite images to estimate cloud edge fractal dimension D on scales between tens of meters and hundreds of kilometers. Box-counting analyses of cloud edges extracted from these images result in best-fit estimates of fractal dimension between 1.4 and 1.6, with satellite approximations being consistently higher than sky camera estimates. Contrary to previous studies, we find no evidence of any scale break and attribute the systematic discrepancy between the two estimates of D to intrinsic differences in the instrument-specific techniques of cloud detection. Next, we synthesize small-scale fractal cloud fields, with D = 1.5 and satellite-derived cloud images as input. Using cloud motion vectors from the same satellite images, we then translate the small-scale cloud fields across a set of model pyranometer locations to obtain corresponding clear-sky index time series. From the simulated time series we calculate increment correlation structures for distances between tens of meters and about ten kilometers, and compare them to observation-based results from 1 Hz measurements of up to 99 pyranometers. The observed isotropic, along-wind, and across-wind spatial autocorrelation structures of clear-sky index increments are captured well by the model, both in terms of overall value and shape. While there are some systematic differences between modelled and observed structures (e.g. underevaluation for very small time scales of a few seconds), the differences are essentially small. In general, the simulated correlations are not strongly sensitive to variations in the fractal model parameters. (C) 2017 Elsevier Ltd. All rights reserved.
机译:对晴空指数增量(即在指定的时间间隔内归一化的表面辐照度的变化)及其空间自相关结构进行建模,对于光伏发电系统的可靠电网集成至关重要。为了捕获混合天空条件下的增量相关结构,我们应用了分形云模型。首先,我们使用数千个鱼眼空中摄影机和卫星图像来估算数十米至几百公里之间尺度上的云边缘分形维数D。从这些图像中提取的云边缘的盒计数分析得出分形维数的最佳拟合估计值在1.4到1.6之间,而卫星近似值始终高于天空摄像机的估计值。与先前的研究相反,我们没有发现任何规模突破的证据,并且将D的两个估计之间的系统差异归因于特定于仪器的云探测技术的内在差异。接下来,我们合成小规模的分形云场,其中D = 1.5,并将卫星衍生的云图像作为输入。使用来自相同卫星图像的云运动矢量,我们然后在一组模型总辐射表位置上转换小规模云场,以获得相应的晴空索引时间序列。从模拟的时间序列中,我们计算了数十米至约十公里之间距离的增量相关结构,并将它们与多达99个日射强度计的1 Hz测量结果与基于观测的结果进行比较。无论是从整体值还是形状上,模型都可以很好地捕获观测到的晴空指数增量的各向同性,顺风和横风空间自相关结构。尽管建模和观察到的结构之间存在一些系统性差异(例如,在几秒钟的非常短的时间范围内进行了低估),但差异实际上很小。通常,模拟的相关性对分形模型参数的变化不是很敏感。 (C)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号