...
首页> 外文期刊>Solar Energy >Solar evaporation of a hanging plasmonic droplet
【24h】

Solar evaporation of a hanging plasmonic droplet

机译:悬挂的等离激元液滴的太阳蒸发

获取原文
获取原文并翻译 | 示例
           

摘要

Plasmonic nanoparticles attract great attention owing to their strong light-to-heat conversion properties. Fundamental understanding of their photothermal performance is critical to develop solar-to-heat systems. Here, we use gold nanoparticles as the photothermal agent. Solar water evaporation are explored through a hanging droplet containing the nanoparticles. These nanoparticles induce multiple scattering events, increasing photon absorption and concentrating the light within the mesoscale domain, leading to an intense collective heating that trigger the evaporation. The droplets with different initial-particle-concentrations lead to evaporation at various rates (e.g. K constant in D2-law), and an optimal initial-particle-concentration can be expected. With steam releasing from the surface, shrinking of the droplet increases the particle concentration in the domain that accelerates the surface evaporation. The surface evaporation rate increases with the increasing concentration of nanoparticle, reaching an optimized value at a threshold concentration and then stable. K values demonstrate a nonlinear dependence over the time, reflecting complex heat-transfer physics behind the phenomenon. We assume that the collective heating is controlled by two parameters: one that relates the morphology properties of the droplet and the other that characterizes the gap between nanoparticles. This work provides an important insight on the evaporation dynamics of plasmonic droplets, and stands for a basis to design the plasmonic solar heating systems.
机译:等离子体等离子纳米颗粒由于其强大的光热转换性能而备受关注。对它们的光热性能的基本了解对于开发太阳能加热系统至关重要。在这里,我们使用金纳米颗粒作为光热剂。通过包含纳米颗粒的悬滴探索太阳能的蒸发。这些纳米粒子引发多次散射事件,增加了光子吸收并在中尺度域内聚集了光,从而导致触发蒸发的强烈集体加热。具有不同初始颗粒浓度的液滴导致以各种速率(例如,D2-定律中的K常数)蒸发,并且可以预期最佳的初始颗粒浓度。随着蒸汽从表面释放,液滴的收缩增加了区域中的颗粒浓度,从而加速了表面蒸发。表面蒸发速率随着纳米颗粒浓度的增加而增加,在阈值浓度下达到最佳值,然后保持稳定。 K值随时间呈非线性关系,反映了现象背后复杂的传热物理学。我们假设集体加热受两个参数控制:一个参数与液滴的形态特性相关,另一个参数表征纳米颗粒之间的间隙。这项工作为等离激元液滴的蒸发动力学提供了重要的见解,并为设计等离激元太阳能加热系统奠定了基础。

著录项

  • 来源
    《Solar Energy》 |2018年第8期|184-191|共8页
  • 作者

    Guohua Liu; Hui Cao; Jinliang Xu;

  • 作者单位

    Key Laboratory of Condition Monitoring and Control for Power Plant Equipment of Ministry of Education, North China Electric Power University;

    Key Laboratory of Condition Monitoring and Control for Power Plant Equipment of Ministry of Education, North China Electric Power University;

    Beijing Key Laboratory of Multiphase Flow and Heat Transfer for Low Grade Energy Utilization, North China Electric Power University;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Solar energy; Droplet evaporation; Plasmonic nanoparticles; Collective heating;

    机译:太阳能;小滴蒸发;等离子体纳米粒子;集体加热;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号