...
首页> 外文期刊>Solar Energy >Use of fiber-optic distributed temperature sensing to investigate erosion of the non-convective zone in salt-gradient solar ponds
【24h】

Use of fiber-optic distributed temperature sensing to investigate erosion of the non-convective zone in salt-gradient solar ponds

机译:利用光纤分布式温度感测来研究盐梯度太阳能池中非对流区的侵蚀

获取原文
获取原文并翻译 | 示例
           

摘要

Salt-gradient solar ponds (SGSPs) collect and store solar radiation as thermal energy. This thermal energy is stored in the pond’s bottom because of the existence of the non-convective zone (NCZ), a layer comprised by a salinity gradient that results in a stable density profile, which suppresses global convection within the pond. As a consequence, the NCZ is the most important layer of an SGSP that must be maintained to sustain the internal structure of the pond and to allow successful thermal energy storage. The NCZ is characterized by a thermal gradient and thus, the internal structure of an SGSP can be inferred using temperature measurements. In this work, fiber-optic distributed temperature sensing (DTS) methods are systematically assessed in a laboratory-scale SGSP, and a simple interface tracking algorithm to determine the NCZ evolution – based on thermal measurements – is presented. To evaluate this algorithm, a DTS system and a discrete array of 14 point-in-space temperature loggers were used to record temperatures in the laboratory-scale SGSP. Acceptable results regarding the NCZ evolution were achieved with the discrete array of sensors. However, much better results were obtained with the DTS high-spatial resolution measurements, despite the presence of some artificial thermal oscillations in the DTS records. These oscillations did not affect the results of the interface tracking algorithm, but may be a concern on large-scale field installations. It was also found that the location of the NCZ boundaries can be determined even with low spatial resolution measurements. However, this determination can only be achieved using the proper interpolation method.
机译:盐梯度太阳能池(SGSP)收集并存储太阳辐射作为热能。由于存在非对流区(NCZ),该热能被存储在池塘的底部,该区域由盐度梯度组成,形成稳定的密度分布,从而抑制了池塘内的整体对流。因此,NCZ是SGSP中最重要的层,必须对其进行维护,以维持池塘的内部结构并成功存储热能。 NCZ的特征在于热梯度,因此可以使用温度测量来推断SGSP的内部结构。在这项工作中,在实验室规模的SGSP中系统地评估了光纤分布式温度感测(DTS)方法,并提出了一种简单的接口跟踪算法-基于热测量来确定NCZ的演变。为了评估该算法,使用了DTS系统和14个空间点温度记录器的离散阵列来记录实验室规模SGSP中的温度。离散传感器阵列获得了有关NCZ演变的可接受结果。但是,尽管DTS记录中存在一些人为的热振荡,但通过DTS高空间分辨率测量获得了更好的结果。这些振荡不会影响接口跟踪算法的结果,但可能会在大型现场安装中引起关注。还发现即使使用低空间分辨率测量也可以确定NCZ边界的位置。但是,只能使用适当的插值方法来实现此确定。

著录项

  • 来源
    《Solar Energy》 |2018年第8期|499-509|共11页
  • 作者单位

    Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile,Centro de Desarrollo Urbano Sustentable (CEDEUS),Center for Solar Energy Technologies (CSET);

    Departamento de Ecosistemas y Medio Ambiente, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile,Centro Interdisciplinario de Cambio Global, Pontificia Universidad Católica de Chile,Aquasec, IAI Center of Excellence for Water Security;

    Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile,Centro de Desarrollo Urbano Sustentable (CEDEUS),Center for Solar Energy Technologies (CSET),Centro de Excelencia en Geotermia de los Andes (CEGA);

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Distributed temperature sensing; Salt-gradient solar ponds; Non-convective zone erosion;

    机译:分布式温度传感;盐梯度太阳能池;非对流带侵蚀;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号