...
首页> 外文期刊>Solar Energy >Control of substrate strain transfer to thin film photovoltaics via interface design
【24h】

Control of substrate strain transfer to thin film photovoltaics via interface design

机译:通过界面设计控制底物应变转移到薄膜光伏电阻

获取原文
获取原文并翻译 | 示例
           

摘要

Brittle thin film photovoltaics (PV) that are integrated with load-bearing structures can be subjected to large strains that lead to fragmentation and performance degradation. Such adverse effects can be mitigated, or altogether eliminated, by mechanically isolating a thin PV module from the underlying load-bearing structure. We developed an effective and efficient strain attenuation strategy to eliminate strain transfer from a stiff unidirectional Carbon Fiber Reinforced Polymer (CFRP) laminate to an integrated thin amorphous Si PV module. An analytical model of the three-layer material system (CFRP laminate, interface layer and PV module) was employed to create strain attenuation maps that depend on the length of the PV module and capture the coupled effects of the shear modulus and the thickness of the interface layer (G2, t2), and the Young's modulus and the thickness of the PV module (E3, t3) through the terms G2/t2 and E3t3, respectively. Based on these strain attenuation maps, polydimethylsiloxane (PDMS) was identified as an effective and versatile interface material, which provided up to 100% strain attenuation between the CFRP laminate and the PV module. After accounting for confinement effects on the effective modulus of the PDMS interface layer, a very good agreement was achieved between the measured and the predicted strain attenuation. Importantly, the PDMS interfacial layer preserved the initial fill factor of the PV module until CFRP laminate failure at 1.7% strain, while in the absence of the PDMS interface the fill factor decreased when the CFRP laminate strain exceeded 0.80%.
机译:与承载结构集成的脆性薄膜光伏(PV)可以受到导致破碎和性能降解的大菌株。通过机械地隔离从下面的承载结构的薄PV模块,可以减轻这种不利影响或者完全消除。我们开发了一种有效且有效的应变衰减策略,以消除从僵硬的单向碳纤维增强聚合物(CFRP)层压体的应变转移到集成的薄无晶硅Si PV模块。采用三层材料系统(CFRP层压板,界面层和光伏组件)的分析模型来产生依赖于PV模块的长度的应变衰减图,并捕获剪切模量的耦合效果和厚度接口层(G2,T2)和杨氏模量和PV模块(E3,T3)的厚度分别通过术语G2 / T2和E3T3。基于这些应变衰减图,将聚二甲基硅氧烷(PDMS)鉴定为有效且通用的界面材料,其在CFRP层压板和PV模块之间提供高达100%的应变衰减。在考虑对PDMS接口层的有效模量的限制效应之后,在测量和预测的应变衰减之间实现了非常好的一致性。重要的是,PDMS界面层保留了PV模块的初始填充因子,直到CFRP层压衰竭在1.7%的菌株下,而在没有PDMS接口的情况下,当CFRP层压菌株超过0.80%时,填充因子降低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号