...
首页> 外文期刊>Solar Energy >Using CFD and ray tracing to estimate the heat losses of a tubular cavity dish receiver for different inclination angles
【24h】

Using CFD and ray tracing to estimate the heat losses of a tubular cavity dish receiver for different inclination angles

机译:使用CFD和RAY跟踪来估计针对不同倾斜角度的管状腔菜碗接收器的热损失

获取原文
获取原文并翻译 | 示例
           

摘要

The process of obtaining an accurate estimate of the heat losses of a tubular cavity receiver absorbing concentrated solar energy from a parabolic dish at various inclination angles and wind speeds is described. Computational fluid dynamics (CFD) was used to simulate the conjugate heat transfer of the absorbed solar radiation to the heat transfer fluid while considering thermal radiation as well as forced and natural convective heat losses. Validation is performed against an experimental heating test at full-scale using heated air and measured wind conditions. On-sun conditions were modelled using the ray-tracing software, SolTrace, adapted for complex geometry receivers using ANSYS mesher and user coding. A 200 million ray result was found to be ray and mesh independent for a meshed receiver surface containing 30 000 elements. The SolTrace heat flux distribution was implemented as a volumetric source in ANSYS Fluent employing user-defined functions. The losses due to thermal radiation out of the cavity, and due to natural convection (using the buoyancy-driven mechanism afforded by gravity and the ideal gas formulation) and forced convection (due to the atmospheric wind) are presented. For the dish considered, 40-50% of the absorbed solar power was transferred to the heat transfer fluid for dish orientations from - 45 degrees to 45 degrees, and wind speeds between 0.5 m/s and 4 m/s. This variation was mainly due to a variation in convective heat losses, with thermal radiative heat losses remaining constant at about 30%. The Nusselt numbers from the CFD simulations are compared against correlations from literature.
机译:描述了在各种倾斜角度和风速下从抛物线吸收浓缩太阳能的管状腔接收器的热损失的准确估计的过程。计算流体动力学(CFD)用于模拟吸收的太阳辐射的缀合物传热,同时考虑热辐射以及强制和自然的对流热损失。使用加热空气以满量程的实验加热试验进行验证,并使用加热的空气和测量的风条件。使用射线跟踪软件,Soltrace,适用于使用ANSYS MESHER和用户编码的复杂几何接收器进行建模的阳光条件。发现了2亿射线结果是光线和网状物,无人含有30 000个元素的网状接收器表面。 Soltrace热通量分布在采用用户定义的功能的ANSYS流利的体积源中实现。提出了由于腔的热辐射而导致的损失,并且由于自然对流(使用重力提供的浮力驱动机制和理想的气体配方)和强制对流(由于大气风)。对于考虑的盘,40-50%的吸收太阳能转移到传热流体中,从45度至45度的盘取向,风速介于0.5米/秒和4米/秒。这种变化主要是由于对流热损失的变化,热辐射热损失持续约30%。 CFD模拟中的NUSERET编号与文献的相关性进行了比较。

著录项

  • 来源
    《Solar Energy》 |2020年第2期|1137-1158|共22页
  • 作者单位

    Univ Pretoria Dept Mech & Aeronaut Engn ZA-0002 Pretoria South Africa;

    Univ Pretoria Dept Mech & Aeronaut Engn ZA-0002 Pretoria South Africa;

    Univ Pretoria Dept Mech & Aeronaut Engn ZA-0002 Pretoria South Africa;

    Univ Pretoria Dept Mech & Aeronaut Engn ZA-0002 Pretoria South Africa;

    Univ Pretoria Dept Mech & Aeronaut Engn ZA-0002 Pretoria South Africa;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号