...
首页> 外文期刊>Solar Energy >Analysis of tubular receivers for concentrating solar tower systems with a range of working fluids, in exergy-optimised flow-path configurations
【24h】

Analysis of tubular receivers for concentrating solar tower systems with a range of working fluids, in exergy-optimised flow-path configurations

机译:用于集中在一系列工作流体的太阳能塔系统管状接收器分析,在漏洞优化的流路配置中

获取原文
获取原文并翻译 | 示例
           

摘要

Central tower concentrating solar power (CSP) systems typically focus solar radiation upon a tubular solar receiver where radiation is absorbed and then transferred, by conduction and convection, into a heat transfer fluid. In this paper, a range of heat transfer fluids are compared, using energy and exergy analysis, and varying the tube diameter, tube wall thickness, and tube-bank flow configuration. The model optimises exergy efficiency including pumping work, assuming uniform flux, and neglecting the effects of thermal stresses, circumferential tube temperature variations and cost. Suitable temperature and pressure conditions are chosen for each fluid, based on a realistic configuration of an applicable thermal energy storage (TES) and power block (PB). The examined heat transfer fluids are molten salt (60% NaNO3, 40% KNO3), liquid sodium, supercritical carbon dioxide (sCO(2)), air, and water/steam. Results showed that liquid sodium at an elevated (540-740 degrees C) temperature range performed best, with a solar-to-fluid exergy efficiency of 61%. At a low temperature range (290-565 degrees C), sodium was still marginally superior to molten salt, even after allowing for some exergy destruction in a sodium-to-salt heat exchanger. Water/steam also performs relatively well in the receiver, although the difficulties of integrating it with large-scale storage make it a challenging heat transfer fluid for an integrated system. Using sCO(2) as the heat transfer fluid appears infeasible due to excessively-high pressure stresses on the tubes. Air also appears unsuitable for simple tubular receivers, since poor heat internal transfer results in high losses due to much hotter external surfaces.
机译:中央塔专用太阳能(CSP)系统通常在管状太阳能接收器上聚焦太阳辐射,其中辐射被吸收,然后通过传导和对流转移到传热流体中。在本文中,比较了一系列传热流体,使用能量和漏洞分析,并改变管道直径,管壁厚度和管芯流动配置。该模型优化了施工效率,包括泵送工作,假设均匀的助焊剂,忽略热应力,圆周管温度变化和成本的影响。基于适用的热能存储(TES)和动力块(PB)的现实配置,为每个流体选择合适的温度和压力条件。检查的传热流体是熔盐(60%纳米3,40%KnO3),液体钠,超临界二氧化碳(SCO(2)),空气和水/蒸汽。结果表明,升高(540-740℃)温度范围的液体钠最佳,太阳能渗透效率为61%。在低温范围(290-565摄氏度),钠仍然仍然优于熔盐,即使在钠 - 盐换热器中允许一些漏洞破坏之后。水/蒸汽在接收器中也表现相对较好,尽管将其与大规模存储器集成的困难使其成为集成系统的挑战传热流体。由于管在管上过高的压力,使用SCO(2)作为传热流体出现不可行的。空气也看起来不适合简单的管状接收器,因为由于大量外表面导致的热内部传递差导致高损耗。

著录项

  • 来源
    《Solar Energy》 |2020年第2期|999-1016|共18页
  • 作者单位

    Australian Natl Univ Res Sch Elect Energy & Mat Engn Canberra ACT Australia;

    Australian Natl Univ Res Sch Elect Energy & Mat Engn Canberra ACT Australia;

    Australian Natl Univ Res Sch Elect Energy & Mat Engn Canberra ACT Australia;

    Australian Natl Univ Res Sch Elect Energy & Mat Engn Canberra ACT Australia;

    Australian Natl Univ Res Sch Elect Energy & Mat Engn Canberra ACT Australia;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Concentrating solar power (CSP); Heat transfer fluid; Exergy analysis; Receiver design;

    机译:集中太阳能(CSP);传热液;漏极分析;接收器设计;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号