...
首页> 外文期刊>Solar Energy >Vertical graphene nano-antennas for solar-to-hydrogen energy conversion
【24h】

Vertical graphene nano-antennas for solar-to-hydrogen energy conversion

机译:用于太阳能 - 氢能量转换的垂直石墨烯纳米天线

获取原文
获取原文并翻译 | 示例
           

摘要

Effective separation and transfer of photogenerated charge carriers are common issues in solar energy conversion. Strong localized electric fields near functional nanostructures reduce charge recombination and boost energy efficiency and photocatalytic activity. However, common metal-based photocatalytic systems on conducting supports under-utilize infrared (IR) light energy, and suffer from unsatisfactory interface quality and stability, as well as high complexity and cost. Here we develop a photocatalytic nano-antennas simultaneously featuring localized field-enhancement in IR, high electric conductivity, and interface stability. In the nano-antennas, plasma-made all-carbon vertical graphene nanopetals (GPs) are covalently interfaced with high-performance metal-free semiconducting graphitic carbon nitride (g-C3N4) photocatalyst. The photo-induced force microscopy is used to obtain real-space images of localized electric field enhancement in the near-IR and mid-IR ranges along the vertically standing ultra-sharp GP edge nano-antennas. The photocurrent, electrochemical impedance spectra, and time-resolved photoluminescence spectra confirm that the GP edge nano-antennas significantly enhance the photogenerated charge carrier separation, accelerate carrier migration, and prolong carrier lifetime. We also demonstrate the scalability of production of the petal edge nano-antennas. The unique graphene nanoarchitecture offer exotic spectral properties, which are essential for many large-scale solar energy harvesting applications such as photocatalysis, photovoltaics, and solar-thermal water desalination and purification.
机译:光生电电荷载体的有效分离和转移是太阳能转换中的常见问题。功能纳米结构附近的强大局部电场降低了电荷重组并提升能效和光催化活性。然而,普通的金属基光催化系统在导电支撑件上利用红外(IR)光能,并且遭受不令人满意的界面质量和稳定性,以及高复杂性和成本。在这里,我们开发了一种光催化纳米天线,同时具有IR,高导电性和接口稳定性的局部场 - 增强。在纳米天线中,等离子体制成的全碳垂直石墨烯纳米纳米纳米百分之(GPS)与高性能无金属半导体石墨氮化物(G-C3N4)光催化剂共价界面。光诱导的力显微镜用于沿着垂直常设的超锋利GP边缘纳米天线获得近IR和中外IR的局部电场增强的实际空间图像。光电流,电化学阻抗谱和时间分辨光致发光光谱证实,GP边缘纳米天线显着增强了光生电荷载流子分离,加速载流子迁移和延长载体寿命。我们还证明了花瓣边缘纳米天线的生产可扩展性。独特的石墨烯纳米建筑提供异国情调的光谱性能,这对于许多大型太阳能收集应用,如光催化,光伏和太阳能 - 热水脱盐和纯化至关重要。

著录项

  • 来源
    《Solar Energy》 |2020年第9期|379-387|共9页
  • 作者单位

    Zhejiang Univ Coll Energy Engn State Key Lab Clean Energy Utilizat Hangzhou 310027 Zhejiang Peoples R China|ZJU Hangzhou Global Sci & Technol Innovat Ctr Hangzhou 311200 Zhejiang Peoples R China;

    Zhejiang Univ Coll Energy Engn State Key Lab Clean Energy Utilizat Hangzhou 310027 Zhejiang Peoples R China|ZJU Hangzhou Global Sci & Technol Innovat Ctr Hangzhou 311200 Zhejiang Peoples R China;

    Univ Nevada Dept Mech Engn Reno NV 89557 USA;

    Chinese Acad Sci Fujian Inst Res Struct Matter CAS Key Lab Design & Assembly Funct Nanostruct Fujian Prov Key Lab Nanomat Fuzhou 350002 Fujian Peoples R China;

    Chinese Acad Sci Fujian Inst Res Struct Matter CAS Key Lab Design & Assembly Funct Nanostruct Fujian Prov Key Lab Nanomat Fuzhou 350002 Fujian Peoples R China;

    Univ Notre Dame Dept Aerosp & Mech Engn Notre Dame IN 46556 USA;

    Univ Notre Dame Dept Aerosp & Mech Engn Notre Dame IN 46556 USA;

    Univ Notre Dame Dept Aerosp & Mech Engn Notre Dame IN 46556 USA;

    Univ New South Wales Sch Chem Engn Sydney NSW 2052 Australia;

    Natl Univ Singapore Dept Phys Singapore 117542 Singapore;

    Zhejiang Univ Coll Energy Engn State Key Lab Clean Energy Utilizat Hangzhou 310027 Zhejiang Peoples R China;

    Zhejiang Univ Coll Energy Engn State Key Lab Clean Energy Utilizat Hangzhou 310027 Zhejiang Peoples R China;

    Univ Calif Los Angeles Calif NanoSyst Inst Mech & Aerosp Engn Dept Los Angeles CA 90095 USA;

    Zhejiang Univ Coll Energy Engn State Key Lab Clean Energy Utilizat Hangzhou 310027 Zhejiang Peoples R China|Queensland Univ Technol Sch Chem & Phys Brisbane Qld 4000 Australia|Queensland Univ Technol Ctr Mat Sci Brisbane Qld 4000 Australia|Joint CSIRO QUT Sustainable Proc & Devices Lab POB 218 Lindfield NSW 2070 Australia;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Solar energy conversion; Plasma made nanostructures; Charge separation; Localized field enhancement; Hydrogen evolution;

    机译:太阳能转换;等离子体制成纳米结构;电荷分离;局部野外增强;氢气进化;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号