...
首页> 外文期刊>Solar Energy >Solar vapor generation using bubbly flow nanofluids with collaborative light-harvesting nanoparticles
【24h】

Solar vapor generation using bubbly flow nanofluids with collaborative light-harvesting nanoparticles

机译:使用带有协作光收获纳米颗粒的起泡流动纳米流体的太阳能蒸气产生

获取原文
获取原文并翻译 | 示例
           

摘要

Nanotechnology can produce metallic particles of nanometer sizes with unique optical and thermal properties. Utilizing the nanofluid in solar systems has distinct advantages over conventional fluids in light harvesting, thermal generation and heat transport. However, the plasmonic effect only induces strong light absorption around its nature resonance peak, which is not desirable for broadband solar absorption. Herein, we propose a composite nanofluid composed of three different kinds of particles with distinguish absorbance peaks for collaborative light absorption over the entire solar spectrum. Dynamic bubbles are further introduced into the nanofluid to promote the solar vapor generation. With light absorption spanning from ultraviolet, visible to near-infrared wavelengths, these particle-bubble couplings induce multiple scattering events, increasing photon absorption and light flux within local domain, leading to intensive heating that activates phase-change evaporation in the close proximity. The bubbly flow nanofluid exhibits the best photothermal efficiency of 91.2% than that of the other counterparts, enabling fast vapor diffusion with an upward bubble-bursting flow, and therefore achieving a decent steam generation efficiency of 40.8% under one-sun irradiation. Our findings not only suggest a new way to improve solar vapor generation in laden-particle solution, but also shed lights on the development of novel solar thermal systems.
机译:纳米技术可以产生具有独特的光学和热性能的纳米尺寸的金属颗粒。利用太阳能系统中的纳米流体具有明显的优点,在常规流体中,在光收获,热发电和热传输中。然而,等离子体效果仅在其性质共振峰周围引起强光吸收,这对于宽带太阳能吸收是不希望的。在此,我们提出由三种不同种类的颗粒组成的复合纳米流体,其具有区分吸光度峰值在整个太阳光谱上进行协作光吸收。动态气泡进一步引入纳米流体中以促进太阳蒸汽产生。利用跨越紫外线的光吸收,可见近红外波长,这些颗粒 - 气泡偶联诱导多个散射事件,增加局域内的光子吸收和光通量,导致密集加热,以在近距离接近激活相变蒸发。气泡流动纳米流体表现出比其他对应物的最佳光热效率为91.2%,从而能够快速蒸汽扩散与向上气泡爆发流动,因此在一阳光照射下实现40.8%的体积蒸汽生成效率。我们的调查结果不仅建议改善升起溶液溶液中的太阳能蒸气发电的新方法,而且还阐明了新型太阳能热系统的开发。

著录项

  • 来源
    《Solar Energy》 |2020年第9期|1214-1221|共8页
  • 作者单位

    North China Elect Power Univ Beijing Key Lab Multiphase Flow & Heat Transfer L Beijing 102206 Peoples R China;

    North China Elect Power Univ Beijing Key Lab Multiphase Flow & Heat Transfer L Beijing 102206 Peoples R China;

    North China Elect Power Univ Beijing Key Lab Multiphase Flow & Heat Transfer L Beijing 102206 Peoples R China|North China Elect Power Univ Minist Educ Key Lab Power Stn Energy Transfer Convers & Syst Beijing 102206 Peoples R China;

    North China Elect Power Univ Beijing Key Lab Multiphase Flow & Heat Transfer L Beijing 102206 Peoples R China|North China Elect Power Univ Minist Educ Key Lab Power Stn Energy Transfer Convers & Syst Beijing 102206 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Solar evaporation; Nanofluid; Bubble; Plasmonic heating; Vapor generation;

    机译:太阳蒸发;纳米流体;泡沫;等离子体加热;蒸汽一代;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号