...
首页> 外文期刊>Solar Energy >High-efficiency solar thermophotovoltaic system using a nanostructure- based selective emitter
【24h】

High-efficiency solar thermophotovoltaic system using a nanostructure- based selective emitter

机译:使用基于纳米结构的选择性发射极的高效太阳能热光伏系统

获取原文
获取原文并翻译 | 示例
           

摘要

In this work, we present the design, fabrication, optimization, and experimental results of a high-efficiency planar solar thermophotovoltaic (STPV) system utilizing a micro-textured absorber and a nanostructure multi layer metal-dielectric coated selective emitter fabricated on a tungsten (W) substrate. Light absorptance of more than 90% was achieved at visible and near-infrared wavelengths using the microtextured absorbing surface. The nanostructure selective emitter consists of two thin-film optical coatings of silicon nitride (Si3N4) and a layer of W in between to increase the surface emissivity in spectral regimes matching the quantum efficiency of the thermophotovoltaic (TPV) cells. Gallium antimonide (GaSb)-based TPV cells are used in our STPV design. The experiment was conducted at different operating temperatures using a high-power continuous wave laser diode stack as a simulated source of concentrated incident radiation. Our experimental setup measured a maximum electrical output power density of 1.71 W/cm(2) at 1676 K STPV temperature, and the overall power conversion efficiency of 8.4% after normalizing the output power density to the emitter area. This is the highest STPV system efficiency reported so far for any experimental STPV device. The incident optical laser power on the absorber side was 131 W. This is equivalent to a solar concentration factor of similar to 2100, which is within the practical limit and readily achievable with Fresnel lens setup.
机译:在这项工作中,我们介绍了一种高效的平面太阳能热光伏(STPV)系统的设计,制造,优化和实验结果,该系统利用微结构化吸收体和在钨上制造的纳米结构多层金属介电涂层选择性发射极( W)基材。使用微织构的吸收表面,在可见光和近红外波长处的光吸收率达到90%以上。纳米结构选择性发射体由两个氮化硅薄膜光学涂层(Si3N4)和一层W组成,以在光谱范围内提高表面发射率,使其与热光电(TPV)电池的量子效率相匹配。我们的STPV设计中使用了基于锑化镓(GaSb)的TPV电池。使用高功率连续波激光二极管堆栈作为集中入射辐射的模拟源,在不同的工作温度下进行了该实验。我们的实验装置在1676 K STPV温度下测得的最大电气输出功率密度为1.71 W / cm(2),将输出功率密度归一化为发射极区域后的总功率转换效率为8.4%。这是迄今为止所有实验性STPV设备报告的最高STPV系统效率。吸收器一侧的入射激光功率为131W。这相当于类似于2100的太阳集中系数,该系数在实际极限之内,并且可以通过菲涅耳透镜装置轻松实现。

著录项

  • 来源
    《Solar Energy》 |2020年第2期|538-545|共8页
  • 作者

  • 作者单位

    Univ Virginia Charlottesville VA 22901 USA|Sci Syst & Applicat Inc Hampton VA 23666 USA;

    Oak Ridge Natl Lab Oak Ridge TN 37831 USA;

    Univ Virginia Charlottesville VA 22901 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    STPV; Blackbody; TPV cells; Nanostructure; Spectral control;

    机译:STPV;黑体TPV细胞;纳米结构光谱控制;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号