...
首页> 外文期刊>Solar Energy >Optimization of laser-patterning process and module design for transparent amorphous silicon thin-film module using thin OMO back electrode
【24h】

Optimization of laser-patterning process and module design for transparent amorphous silicon thin-film module using thin OMO back electrode

机译:使用薄OMO背电极的透明非晶硅薄膜模块的激光图案化工艺和模块设计的优化

获取原文
获取原文并翻译 | 示例
           

摘要

Transparent hydrogenated amorphous silicon thin-film solar modules are fabricated using oxide-metal-oxide (OMO) electrodes as the back electrode for building-integrated photovoltaic applications. The outer aluminum-doped zinc oxide and inner silver layers constitute a thin OMO electrode (similar to 110 nm thick), exhibiting a sheet resistance of 6.8 Omega/square and an average transmittance of similar to 88% in the visible range of 400-800 nm. The external quantum efficiency and average transmittance of the cell were investigated for the absorber-layer thickness using the finite-difference time-domain method, and it was found that the optical loss in the cell was mainly due to the absorption of the front electrode in the ultra-violet region and free-carrier absorption of the OMO in the infrared region. Fabrication issues are introduced for a 532 nm short-pulse high-power laser patterning process for transparent modules with thin OMO electrodes. Optimization of the laser power for the P2 and P3 laser processes is demonstrated by observing the profiles and measuring the shunt resistance of the laser-patterned edges. Furthermore, the cell width is optimized based on an equivalent circuit model using PSpice simulation. The highest module efficiency and average transparency achieved in the range of 500-800 nm were 5.6% and 15.2%, respectively. The short-circuit current density, fill factor, and open-circuit voltage per cell of the module were found to be 10.8 mA/cm(2), 62.7%, and 0.830 V, respectively.
机译:使用氧化物-金属-氧化物(OMO)电极作为背电极来制造透明氢化非晶硅薄膜太阳能电池组件,用于建筑集成光伏应用。外层掺杂铝的氧化锌和内层银构成一个薄的OMO电极(约110 nm厚),在400-800的可见光范围内,其薄层电阻为6.8 Omega / square,平均透射率约为88%。纳米使用时域有限差分法研究了吸收层厚度的电池外部量子效率和平均透射率,发现电池中的光损耗主要是由于前电极的吸收。紫外区域和OMO在红外区域的自由载流子吸收。针对具有薄OMO电极的透明模块的532 nm短脉冲高功率激光图案化工艺,引入了制造问题。通过观察轮廓并测量激光图案化边缘的分流电阻,可以证明P2和P3激光工艺的激光功率优化。此外,使用PSpice仿真基于等效电路模型优化单元宽度。在500-800 nm范围内实现的最高模块效率和平均透明度分别为5.6%和15.2%。每个模块的电池的短路电流密度,填充系数和开路电压分别为10.8 mA / cm(2),62.7%和0.830V。

著录项

  • 来源
    《Solar Energy》 |2020年第5期|75-83|共9页
  • 作者

  • 作者单位

    Korea Inst Mat Sci Mat Ctr Energy Convergence Chang Won 51508 Gyeongnam South Korea|Univ Sci & Technol Dept Adv Mat Engn 217 Gajeong Ro Daejeon 34113 South Korea;

    Korea Inst Mat Sci Mat Ctr Energy Convergence Chang Won 51508 Gyeongnam South Korea|Pusan Natl Univ Dept Mat Sci & Engn Busan 46241 South Korea;

    Korea Aerosp Univ Sch Elect & Informat Engn Goyang 10540 Gyeonggi South Korea;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Transparent amorphous silicon photovoltaic; Oxide-metal-oxide electrode; Laser patterning; Cell geometry; Building integrated photovoltaic; Equivalent circuit;

    机译:透明非晶硅光伏;氧化物-金属氧化物电极;激光图案化;单元几何;建筑一体化光伏;等效电路;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号