首页> 外文期刊>Solar Energy >Possible deviations from AM1.5 illumination in coherent light simulations on plasmonic nanostructures in Perovskite solar cells
【24h】

Possible deviations from AM1.5 illumination in coherent light simulations on plasmonic nanostructures in Perovskite solar cells

机译:钙钛矿型太阳能电池等离子体纳米结构的相干光模拟中AM1.5照明的可能偏差

获取原文
获取原文并翻译 | 示例
           

摘要

The use of plasmonic nanostructures for light management in solar cells has been explored for conventional materials and is currently topic of interest for the perovskite solar cell. Often these studies make use of finite difference time domain (FDTD) simulations in which high intensity coherent light is used, which simultaneously generates multiple plasmon excitations In the plasmonic nanostructures in agreement with the quantum mechanical view. However, because of the relatively small photon flux of real sun light, in the classical view only one plasmon excitation can be generated at a time in real plasmonic nanostructured devices. In this work we demonstrate that the use of high intensity coherent light in simulations causes significant optical absorption variations due to surface plasmon polariton (SPP) interference, depending on incident light phase difference between neighboring plasmonic nanostructures. Because this is not possible under real sun light conditions in the classical view, this could constrain such FDTD simulations. The question therefore arises if a quantum mechanical view is more appropriate. In this case study the plasmonic nanostructures are embedded in Perovskite, which has a strong optical absorption from silver surface plasmon polaritons and is therefore sensitive to SPP interference. This study raises the question whether to mimic real sun light, SPPs should be separately generated at each individual plasmonic nanostructure, or that the quantum mechanical view leads to a better agreement with the experimental solar cell.
机译:对于常规材料,已经探索了将等离激元纳米结构用于太阳能电池中的光管理,并且是钙钛矿太阳能电池当前感兴趣的主题。通常,这些研究利用有限差分时域(FDTD)模拟,其中使用高强度相干光,同时与量子力学视图一致地在等离子体纳米结构中产生多个等离子体激元激发。但是,由于实际太阳光的光子通量相对较小,因此在经典视图中,实际等离子纳米结构器件中一次只能产生一个等离激元激发。在这项工作中,我们证明在模拟中使用高强度相干光会由于表面等离振子极化(SPP)干扰而导致明显的光吸收变化,具体取决于相邻等离激元纳米结构之间的入射光相位差。因为在经典视图中在真实的阳光条件下这是不可能的,所以这可能会限制此类FDTD仿真。因此,如果量子力学的观点更合适,就会出现问题。在本案例研究中,等离激元纳米结构嵌入钙钛矿中,该钙钛矿对银表面等离激元极化子具有强烈的光吸收,因此对SPP干扰敏感。这项研究提出了一个问题,即是模仿真实的太阳光,还是应该在每个单独的等离子纳米结构上分别生成SPP,或者量子力学视图是否与实验太阳能电池更好地吻合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号