...
首页> 外文期刊>Solar Energy >Sensible and latent heat energy storage systems for concentrated solar power plants, exergy efficiency comparison
【24h】

Sensible and latent heat energy storage systems for concentrated solar power plants, exergy efficiency comparison

机译:集中式太阳能发电厂的显热和潜热储能系统,火用效率比较

获取原文
获取原文并翻译 | 示例
           

摘要

Different options of sensible and latent heat storage systems comprising different types of heat transfer fluids, heat storage media or phase change materials (PCMs) have been compared considering the upstream and downstream requirements of a concentrated solar power cycle. For an optimal system, analysis of both the energy efficiency and exergy recovery of the storage system and the whole cycle of heat to power is necessary. This study provides this analysis, comparing a two-tank sensible storage system to latent heat shell and tube storage system, using an analytical method, epsilon-NTU. For the case of molten salt as the PCM and sCO(2) as the heat transfer fluid, results show 4.02% higher exergy recovery for the two-tank system at a working temperature range 450-700 degrees C compared to 450-660 degrees C for the latent heat storage system where the upper limit is the PCM melting temperature. Compared to the Carnot cycle efficiency (the highest rate of useful energy (exergy) recovery for an isentropic process) of 70%, the overall efficiency of the two-tank system, the base case of molten salt/sCO(2), molten salt/Na, and molten metal/sCO(2) are 57.41%, 53.39%, 55.21%, and 53.55%, respectively. The gap in efficiency between the sensible and latent heat storage systems decreases by lowering the thermal resistance of heat transfer fluid side and/or the PCM side. Specifically, the gap in efficiency decreases 45% by using liquid Na instead of sCO(2) and a 4% decrease is observed when replacing molten salt with a molten metal like aluminium as the PCM. Using PCMs with higher melting temperature is preferred with liquids with high thermal conductivity like Sodium. For a heat transfer fluid such as sCO(2) with low thermal conductivity, a higher inlet fluid temperature and/or a low temperature PCM can provide high exergy efficiency. For a specific combination of PCM and heat transfer fluid, an optimal melting temperature exists depending on the inlet temperatures during charging/discharging and the thermophysical properties of the media. The study shows that PCM storage provides opportunities to minimise causes of irreversibilities to achieve simultaneous high volumetric energy density and high exergy recovery for CSP application in comparison with the conventional two-tank sensible storage.
机译:考虑到集中式太阳能循环的上游和下游要求,已经比较了包括不同类型的传热流体,储热介质或相变材料(PCM)的显热和潜热存储系统的不同选项。对于最佳系统,必须分析存储系统的能效和火用回收率以及从热到电的整个循环。这项研究通过使用epsilon-NTU分析方法,将两罐式明智的存储系统与潜热壳管式存储系统进行了比较,从而进行了分析。对于熔融盐作为PCM和sCO(2)作为传热流体的情况,结果表明,与450-660摄氏度相比,在450-700摄氏度的工作温度范围内,两气罐系统的火用回收率高4.02%对于潜热存储系统,其中上限为PCM熔化温度。与70%的卡诺循环效率(等熵过程中的最高有用能量(火用)回收率)相比,双罐系统的整体效率,熔融盐/ sCO(2),熔融盐的基本情况/ Na和熔融金属/ sCO(2)分别为57.41%,53.39%,55.21%和53.55%。通过降低传热流体侧和/或PCM侧的热阻,减小了显热和潜热存储系统之间的效率差距。具体而言,通过使用液体Na代替sCO(2),效率的差距降低了45%,当用铝等熔融金属作为PCM代替熔融盐时,效率降低了4%。对于具有高导热率的液体(如钠),优选使用具有较高熔化温度的PCM。对于导热系数低的sCO(2)之类的传热流体,较高的入口流体温度和/或低温PCM可以提供较高的火用效率。对于PCM和传热流体的特定组合,存在最佳的熔化温度,具体取决于充电/放电过程中的入口温度和介质的热物理性质。研究表明,与传统的两罐式明智存储相比,PCM存储提供了机会,可以最大程度地减少不可逆性,从而实现CSP应用同时实现高体积能量密度和高火用回收率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号