...
首页> 外文期刊>Sequential analysis >Two-Stage Fixed-Width Confidence Intervals for a Normal Mean in the Presence of Suspect Outliers
【24h】

Two-Stage Fixed-Width Confidence Intervals for a Normal Mean in the Presence of Suspect Outliers

机译:存在可疑异常值时的均值的两阶段固定宽度置信区间

获取原文
获取原文并翻译 | 示例
           

摘要

We revisit fixed-width (= 2d) confidence interval procedures with a preassigned confidence coefficient (≥ 1 - α) for the mean μ of a normal distribution when its variance σ~2 is unknown. Had σ been known, the required optimal fixed sample size would be C ≡ α~2σ~2/d~2 where α ≡ α_α is the upper 50α% point of N(0,1). In his fundamental two-stage procedure, Stein (1945, 1949) estimated C by replacing σ~2 with a sample variance from pilot data of size m(≥ 2) and a with t_(m-1),α/2. Mukhopadhyay (1982) opened the possibility of incorporating less traditional estimators of σ~2. We focus on estimating σ~2 by a statistic U_m~2 defined via Gini's mean difference (GMD), mean absolute deviation (MAD), and range. Such modifications are warranted especially when we suspect one or more outliers but normality of the data may not be questioned by a standard test for normality assumption. Obviously, then, t_(m-1),α/2 must be replaced by the upper 50α% point corresponding to a pivotal distribution of the sample mean standardized appropriately by U_m. This way, we explore the role of Mukhopadhyay (1982) two-stage confidence interval procedure when the requisite sample size is determined through GMD, MAD, or range. Associated exact and some asymptotic first-order properties are developed first. Next, we revisit Mukhopadhyay and Duggan (1997) updated two-stage methodology that was proposed when a known positive lower bound σ_L~2 was available for σ~2 in the present light. We highlight associated (ⅰ) first-order efficiency properties for all proposed fixed-width confidence interval procedures and (ⅱ) second-order efficiency property of the GMD-based procedure. These are accompanied with extensive data analyses via simulations as well as real data.
机译:当方差σ〜2未知时,我们将对预先确定的置信系数(≥1 -α)的固定宽度(= 2d)置信区间程序进行正态分布的均值μ。已知σ时,所需的最佳固定样本大小为C≡α〜2σ〜2 / d〜2,其中α≡α_α是N(0,1)的上50α%点。在他的基本两步法中,斯坦(1945,1949)通过用大小为m(≥2)的先导数据的样本方差和以t_(m-1),α/ 2的a作为样本方差替换σ〜2来估计C。 Mukhopadhyay(1982)提出了合并较少的σ〜2传统估计的可能性。我们专注于通过统计值U_m〜2估计σ〜2,该统计值由Gini的均值差(GMD),平均绝对偏差(MAD)和范围定义。特别是当我们怀疑一个或多个离群值,但对于正态性假设的标准测试可能不会质疑数据的正态性时,就必须进行此类修改。显然,t_(m-1),α/ 2必须用对应于用U_m适当标准化的样本均值的枢轴分布的上50α%点代替。这样,当通过GMD,MAD或范围确定所需的样本量时,我们探索Mukhopadhyay(1982)两阶段置信区间过程的作用。关联精确和一些渐近一阶性质首先被开发出来。接下来,我们回顾Mukhopadhyay和Duggan(1997)更新的两阶段方法,该方法是在当前情况下,当已知的正下界σ_L〜2可用于σ〜2时提出的。我们突出显示了所有建议的固定宽度置信区间过程的相关(ⅰ)一阶效率属性和基于GMD的过程的(ⅱ)二阶效率属性。这些都伴随着通过模拟以及真实数据进行的大量数据分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号