首页> 外文期刊>Pure and Applied Geophysics >Fluid Pressure Variation in a Sedimentary Geothermal Reservoir in the North German Basin: Case Study Groß Schönebeck
【24h】

Fluid Pressure Variation in a Sedimentary Geothermal Reservoir in the North German Basin: Case Study Groß Schönebeck

机译:德国北部盆地沉积性地热储层中的流体压力变化:案例研究GroßSchönebeck

获取原文
获取原文并翻译 | 示例
       

摘要

The Rotliegend of the North German basin is the target reservoir of an interdisciplinary investigation program to develop a technology for the generation of geothermal electricity from low-enthalpy reservoirs. An in situ downhole laboratory was established in the 4.3 km deep well Groβ Schönebeck with the purpose of developing appropriate stimulation methods to increase permeability of deep aquifers by enhancing or creating secondary porosity and flow paths. The goal is to learn how to enhance the inflow performance of a well from a variety of rock types in low permeable geothermal reservoirs. A change in effective stress due to fluid pressure was observed to be one of the key parameters influencing flow properties both downhole and in laboratory experiments on reservoir rocks. Fluid pressure variation was induced using proppant-gel-frac techniques as well as waterfrac techniques in several different new experiments in the borehole. A pressure step test indicates generation and extension of multiple fractures with closure pressures between 6 and 8.4 MPa above formation pressure. In a 24-hour production test 859 m3 water was produced from depth indicating an increase of productivity in comparison with former tests. Different depth sections and transmissibility values were observed in the borehole depending on fluid pressure. In addition, laboratory experiments were performed on core samples from the sandstone reservoir under uniaxial strain conditions, i.e., no lateral strain, constant axial load. The experiments on the borehole and the laboratory scale were realized on the same rock types under comparable stress conditions with similar pore pressure variations. Nevertheless, stress dependences of permeability are not easy to compare from scale to scale. Laboratory investigations reflect permeability variations due to microstructural heterogeneities and the behavior in the borehole is dominated by the generation of connections to large-scale structural patterns.
机译:北德盆地的Rotliegend是跨学科研究计划的目标储层,旨在开发一种从低焓储层产生地热发电的技术。在4.3公里深的GroβSchönebeck井中建立了一个现场井下实验室,目的是开发适当的增产方法,以通过增加或形成次要孔隙度和流动路径来增加深层含水层的渗透性。目的是学习如何提高低渗透性地热储层中各种岩石类型的井的流入性能。观察到由于流体压力引起的有效应力的变化是影响井下和储层岩石实验性能的关键参数之一。使用支撑剂-凝胶-压裂技术以及水压裂技术在井眼中的几个不同的新实验中引起流体压力变化。压力阶跃试验表明闭合裂缝压力比地层压力高6到8.4 MPa之间时,多处裂缝的产生和扩展。在24小时的生产测试中,从深处生产了859立方米的水,表明与以前的测试相比,生产率提高了。根据流体压力,在钻孔中观察到不同的深度剖面和透射率值。另外,在单轴应变条件下,即没有横向应变,恒定轴向载荷的情况下,对砂岩储层的岩心样品进行了实验室实验。在相同的岩石类型上,在可比较的应力条件下,具有相似的孔隙压力变化,进行了井眼和实验室规模的实验。然而,渗透率的应力依赖性并不容易按比例进行比较。实验室研究反映出由于微结构异质性引起的渗透率变化,井眼中的行为主要是与大型结构模式的联系的产生。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号