首页> 外文期刊>Pure and Applied Geophysics >The Micromechanics of Westerley Granite at Large Compressive Loads
【24h】

The Micromechanics of Westerley Granite at Large Compressive Loads

机译:大压缩载荷下Westerley花岗岩的微力学

获取原文
获取原文并翻译 | 示例
           

摘要

The micromechanical damage mechanics formulated by Ashby and Sammis (Pure Appl Geophys 133(3) 489–521, 1990) has been shown to give an adequate description of the triaxial failure surface for a wide variety of rocks at low confining pressure. However, it does not produce the large negative curvature in the failure surface observed in Westerly granite at high confining pressure. We show that this discrepancy between theory and data is not caused by the two most basic simplifying assumptions in the damage model: (1) that all the initial flaws are the same size or (2) that they all have the same orientation relative to the largest compressive stress. We also show that the stress–strain curve calculated from the strain energy density significantly underestimates the nonlinear strain near failure in Westerly granite. Both the observed curvature in the failure surface and the nonlinear strain at failure observed in Westerly granite can be quantitatively fit using a simple bi-mineral model in which the feldspar grains have a lower flow stress than do the quartz grains. The conclusion is that nonlinearity in the failure surface and stress–strain curves observed in triaxial experiments on Westerly granite at low loading rates is probably due to low-temperature dislocation flow and not simplifying assumptions in the damage mechanics. The important implication is that discrepancies between experiment and theory should decrease with increased loading rates, and therefore, the micromechanical damage mechanics, as formulated, can be expected to give an adequate description of high strain-rate phenomena like earthquake rupture, underground explosions, and meteorite impact.
机译:由Ashby和Sammis(Pure Appl Geophys 133(3)489-521,1990)提出的微机械损伤机理已被证明可以很好地描述低围压下各种岩石的三轴破坏面。但是,在高围压下,在Westerly花岗岩中观察到的破坏面不会产生较大的负曲率。我们表明,理论与数据之间的这种差异并不是由损坏模型中的两个最基本的简化假设引起的:(1)所有初始缺陷的大小均相同,或者(2)它们相对于缺陷的方向相同。最大压应力。我们还表明,由应变能密度计算出的应力-应变曲线大大低估了Westerly花岗岩在破坏附近的非线性应变。可以使用简单的双矿物模型定量拟合在Westerly花岗岩中观察到的破坏面曲率和破坏时的非线性应变,在该模型中,长石颗粒的流动应力低于石英颗粒的流动应力。结论是,在低载荷下,在Westerly花岗岩的三轴实验中观察到的破坏面和应力-应变曲线的非线性可能是由于低温位错流引起的,而不是简化了破坏机理的假设。重要的含义是,实验和理论之间的差异应随着加载速率的增加而减小,因此,可以认为,所制定的微机械损伤力学能够充分描述高应变率现象,例如地震破裂,地下爆炸和陨石撞击。

著录项

  • 来源
    《Pure and Applied Geophysics》 |2011年第12期|p.2181-2198|共18页
  • 作者单位

    Department of Earth Sciences , 3651 Trousdale Parkway, Los Angeles, CA, 90089, USA;

    Department of Earth Sciences , 3651 Trousdale Parkway, Los Angeles, CA, 90089, USA;

    Graduate Aerospace Laboratories, 1200 E. California Blvd., Pasadena, CA, 91125, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号