首页> 外文期刊>Pure and Applied Geophysics >Modelling of Strong Ground Motions from 1991 Uttarkashi, India, Earthquake Using a Hybrid Technique
【24h】

Modelling of Strong Ground Motions from 1991 Uttarkashi, India, Earthquake Using a Hybrid Technique

机译:使用混合技术对印度1991年Uttarkashi地震造成的强烈地面运动进行建模

获取原文
获取原文并翻译 | 示例
           

摘要

We present a simple and efficient hybrid technique for simulating earthquake strong ground motion. This procedure is the combination of the techniques of envelope function (Midorikawa et al. Tectonophysics 218:287–295, 1993) and composite source model (Zeng et al. Geophys Res Lett 21:725–728, 1994). The first step of the technique is based on the construction of the envelope function of the large earthquake by superposition of envelope functions for smaller earthquakes. The smaller earthquakes (sub-events) of varying sizes are distributed randomly, instead of uniform distribution of same size sub-events, on the fault plane. The accelerogram of large event is then obtained by combining the envelope function with a band-limited white noise. The low-cut frequency of the band-limited white noise is chosen to correspond to the corner frequency for the target earthquake magnitude and the high-cut to the Boore’s f max or a desired frequency for the simulation. Below the low-cut frequency, the fall-off slope is 2 in accordance with the ω2 earthquake source model. The technique requires the parameters such as fault area, orientation of the fault, hypocenter, size of the sub-events, stress drop, rupture velocity, duration, source–site distance and attenuation parameter. The fidelity of the technique has been demonstrated by successful modeling of the 1991 Uttarkashi, Himalaya earthquake (Ms 7). The acceptable locations of the sub-events on the fault plane have been determined using a genetic algorithm. The main characteristics of the simulated accelerograms, comprised of the duration of strong ground shaking, peak ground acceleration and Fourier and response spectra, are, in general, in good agreement with those observed at most of the sites. At some of the sites the simulated accelerograms differ from observed ones by a factor of 2–3. The local site geology and topography may cause such a difference, as these effects have not been considered in the present technique. The advantage of the technique lies in the fact that detailed parameters such as velocity-Q structures and empirical Green’s functions are not required or the records of the actual time history from the past earthquakes are not available. This method may find its application in preparing a wide range of scenarios based on simulation. This provides information that is complementary to the information available in probabilistic hazard maps.
机译:我们提出了一种简单有效的混合技术来模拟地震强烈的地面运动。此过程是包络函数技术(Midorikawa等,Tectonophysics 218:287-295,1993)和复合源模型(Zeng等,Geophys Res Lett 21:725-728,1994)的组合。该技术的第一步是通过叠加小地震的包络函数来构造大地震的包络函数。大小不同的较小地震(子事件)在断层平面上随机分布,而不是等大小子事件的均匀分布。然后,通过将包络函数与带限白噪声相结合来获得大事件的加速度图。选择带限白噪声的低切频率以对应于目标地震震级的转折频率,将高切为Boore的f max 或模拟所需的频率。在低切频率以下,根据ω2震源模型,衰减斜率为2。该技术需要参数,例如断层面积,断层方向,震源,子事件的大小,应力降,破裂速度,持续时间,震源距离和衰减参数。通过对1991年喜马拉雅山Uttarkashi地震(Ms 7)的成功建模,证明了该技术的保真度。已经使用遗传算法确定了故障平面上子事件的可接受位置。通常,模拟的加速度计的主要特征包括强地面震动的持续时间,峰值地面加速度以及傅立叶和响应谱,与大多数站点观测到的特征基本吻合。在某些地点,模拟的加速度图与观察到的加速度图相差2-3倍。本地站点的地质和地形可能会导致这种差异,因为在本技术中尚未考虑这些影响。该技术的优势在于,不需要诸如速度Q结构和格林经验函数之类的详细参数,也无法获得过去地震的实际时间历史记录。该方法可在基于模拟的各种场景准备中找到其应用。这提供了与概率危险图中可用信息互补的信息。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号