首页> 外文期刊>Pure and Applied Geophysics >Accurate Location of Synthetic Acoustic Emissions and Location Sensitivity to Relocation Methods, Velocity Perturbations, and Seismic Anisotropy
【24h】

Accurate Location of Synthetic Acoustic Emissions and Location Sensitivity to Relocation Methods, Velocity Perturbations, and Seismic Anisotropy

机译:合成声发射的精确位置以及对重定位方法,速度扰动和地震各向异性的位置敏感性

获取原文
获取原文并翻译 | 示例
           

摘要

Acoustic emission (AE) monitoring is a non-invasive method of monitoring fracturing both in situ, and in experimental rock deformation studies. Until recently, the major impediment for imaging brittle failure within a rock mass is the accuracy at which the hypocenters may be located. However, recent advances in the location of regional scale earthquakes have successfully reduced hypocentral uncertainties by an order of magnitude. The least-squares Geiger, master event relocation, and double difference methods have been considered in a series of synthetic experiments which investigate their ability to resolve AE hypocentral locations. The effect of AE hypocenter location accuracy due to seismic velocity perturbations, uncertainty in the first arrival pick, array geometry and the inversion of a seismically anisotropic structure with an isotropic velocity model were tested. Hypocenters determined using the Geiger procedure for a homogeneous, isotropic sample with a known velocity model gave a RMS error for the hypocenter locations of 2.6 mm; in contrast the double difference method is capable of reducing the location error of these hypocenters by an order of magnitude. We test uncertainties in velocity model of up to ±10% and show that the double difference method can attain the same RMS error as using the standard Geiger procedure with a known velocity model. The double difference method is also capable of precise locations even in a 40% anisotropic velocity structure using an isotropic model for location and attains a RMS mislocation error of 2.6 mm that is comparable to a RMS mislocation error produced with an isotropic known velocity model using the Geiger approach. We test the effect of sensor geometry on location accuracy and find that, even when sensors are missing, the double difference method is capable of a 1.43 mm total RMS mislocation compared to 4.58 mm for the Geiger method. The accuracy of automatic picking algorithms used for AE studies is ±0.5 µs (1 time sample when the sampling rate is 0.2 µs). We investigate how AE locations are effected by the accuracy of first arrival picking by randomly delaying the actual first arrival by up to 5 time samples. We find that even when noise levels are set to 5 time samples the double difference method successfully relocates the synthetic AE.
机译:声发射(AE)监测是一种非侵入性的方法,既可以现场监测岩石,也可以进行实验性岩石变形研究。直到最近,对岩体中的脆性破坏进行成像的主要障碍是震源可能位于的精度。但是,区域地震地点的最新进展已成功地将震中的不确定性降低了一个数量级。在一系列合成实验中考虑了最小二乘方盖革(Geiger),主事件重定位和双差方法,这些方法研究了它们解决AE偏心位置的能力。测试了由于地震速度扰动,首次到达拾取的不确定性,阵列几何形状以及利用各向同性速度模型反演各向异性结构而引起的AE震中位置精度的影响。对于已知的速度模型,使用Geiger程序对均质各向同性样品确定的震源在2.6 mm的震中位置具有RMS误差。相反,双差法能够将这些震源的位置误差减小一个数量级。我们测试了高达±10%的速度模型中的不确定性,并表明双差方法可以与使用已知速度模型的标准Geiger程序获得相同的RMS误差。即使使用各向异性模型进行定位,即使在40%的各向异性速度结构中,双差法也能够精确定位,并且RMS错位误差为2.6 mm,与使用等速已知速度模型的RMS错位误差相当。盖革方法。我们测试了传感器几何形状对位置精度的影响,发现即使缺少传感器,双差方法也能使RMS总体错位1.43 mm,而Geiger方法为4.58 mm。用于AE研究的自动选择算法的精度为±0.5 µs(采样率为0.2 µs时为1次采样)。我们通过随机延迟实际首次到达最多5个时间样本来研究首次到达采摘的准确性如何影响AE位置。我们发现,即使将噪声级别设置为5次采样,双差方法也可以成功地重新定位合成AE。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号