...
首页> 外文期刊>Proceedings of the IEEE >Transport-Based Biophysical System Models of Cells for Quantitatively Describing Responses to Electric Fields
【24h】

Transport-Based Biophysical System Models of Cells for Quantitatively Describing Responses to Electric Fields

机译:基于运输的细胞生物物理系统模型,用于定量描述对电场的响应

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper, we review computational methods based on spatially distributed transport models that we have used to describe biological cell system responses to electric fields. Application to electroporation (EP) is emphasized, as it is increasingly used experimentally, but is not well understood quantitatively. We argue that Cartesian transport lattices (CTLs) and meshed transport networks (MTNs) are appropriate for describing transport in cellular systems generally. The approach is based on mathematical descriptions of transport in 1-D, which are then assigned to intranodal regions in 1-D, 2-D, and 3-D cell system geometries. Electrical behavior is based on nonspecific charge movement. Descriptions of heat transfer and both molecular and ionic transport have also been examined. This approach allows both traditional, idealized geometries [e.g., cylindrical, spherical plasma membrane (PM)] and also more realistic, irregular cell shapes and sizes to be used approximately, with little difference in computational difficulty. The more complex (active) local membrane models are similar to “agents” in agent-based modeling, in the sense that it is the individual responses of interactions within local regions that yield overall system behavior, which can be emergent and nonintuitive. Cell system models may be useful for screening of EP candidate combinations of pulse parameters, cell characteristics, and molecular transport properties with the goal of optimizing existing experimental protocols and possibly discovering new effects and applications.
机译:在本文中,我们回顾了基于空间分布运输模型的计算方法,该模型用于描述生物细胞系统对电场的响应。强调了其在电穿孔(EP)中的应用,因为它在实验中越来越多地被使用,但在定量上还没有被很好地理解。我们认为,笛卡尔运输网格(CTL)和网状运输网络(MTN)适用于一般描述蜂窝系统中的运输。该方法基于1-D传输的数学描述,然后将其分配给1-D,2-D和3-D单元系统几何形状的结内区域。电气行为基于非特定的电荷运动。还研究了热传递以及分子和离子传递的描述。该方法允许近似地使用传统的理想化的几何形状[例如,圆柱形的球形等离子膜(PM)],并且可以更实际地使用更现实,不规则的细胞形状和大小,而在计算难度上几乎没有差异。在基于代理的建模中,更复杂的(活动)局部膜模型类似于“代理”,从某种意义上说,是局部区域内相互作用的个体响应会产生整体系统行为,这可能是紧急的和非直观的。细胞系统模型可用于筛选脉冲参数,细胞特性和分子转运特性的EP候选组合,以优化现有实验方案并可能发现新的作用和应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号